Gene Summary

Gene:NRG1; neuregulin 1
Summary:The protein encoded by this gene is a membrane glycoprotein that mediates cell-cell signaling and plays a critical role in the growth and development of multiple organ systems. An extraordinary variety of different isoforms are produced from this gene through alternative promoter usage and splicing. These isoforms are expressed in a tissue-specific manner and differ significantly in their structure, and are classified as types I, II, III, IV, V and VI. Dysregulation of this gene has been linked to diseases such as cancer, schizophrenia, and bipolar disorder (BPD). [provided by RefSeq, Apr 2016]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:pro-neuregulin-1, membrane-bound isoform
Source:NCBIAccessed: 31 August, 2019


What does this gene/protein do?
Show (58)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Lung Cancer
  • TGFA
  • Tyrosine
  • p21-Activated Kinases
  • Antineoplastic Agents
  • Genetic Predisposition
  • Neuregulin-1
  • Adenocarcinoma of Lung
  • Drug Resistance
  • Phenotype
  • Bladder Cancer
  • Gene Expression Profiling
  • Mutation
  • Receptor, erbB-3
  • Paraffin Embedding
  • Xenograft Models
  • Genome-Wide Association Study
  • Biomarkers, Tumor
  • Protein Kinase Inhibitors
  • RT-PCR
  • Zinc Fingers
  • Spliceosomes
  • Sulfones
  • Messenger RNA
  • Breast Cancer
  • Oncogene Fusion Proteins
  • Thyrotropin
  • Receptor, erbB-2
  • Protein Isoforms
  • Schizophrenia
  • Vestibular Nerve
  • Signal Transduction
  • Oligonucleotide Array Sequence Analysis
  • Receptor, ErbB-4
  • Cell Proliferation
  • Chromosome 8
  • Adenocarcinoma
  • ErbB Receptors
  • Cancer Gene Expression Regulation
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: NRG1 (cancer-related)

Dimou A, Camidge DR
Detection of
Clin Cancer Res. 2019; 25(16):4865-4867 [PubMed] Related Publications
Fusions between

Aguirre AJ
Oncogenic NRG1 Fusions: A New Hope for Targeted Therapy in Pancreatic Cancer.
Clin Cancer Res. 2019; 25(15):4589-4591 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Approximately 8%-10% of pancreatic ductal adenocarcinoma cases are

Jones MR, Williamson LM, Topham JT, et al.
Clin Cancer Res. 2019; 25(15):4674-4681 [PubMed] Related Publications
PURPOSE: Gene fusions involving neuregulin 1 (
EXPERIMENTAL DESIGN: Forty-seven patients with pancreatic ductal adenocarcinoma received comprehensive whole-genome and transcriptome sequencing and analysis. Two patients with gene fusions involving
RESULTS: Three of 47 (6%) patients with advanced pancreatic ductal adenocarcinoma were identified as
CONCLUSIONS: This work adds to a growing body of evidence that

Autenshlyus AI, Golovanova AV, Studenikina AA, et al.
Personalized Approach to Assessing mRNA Expression of Histidine-Rich Glycoprotein and Immunohistochemical Markers in Diseases of the Breast.
Dokl Biochem Biophys. 2019; 484(1):59-62 [PubMed] Related Publications
Biopsy material of patients with malignant and benign breast diseases was examined. HRG mRNA expression was detected in 70% of cases in biopsy material obtained from patients with nonspecific invasive carcinoma and in 66.7% of cases in biopsy material of patients with benign breast diseases. Immunohistochemical analysis revealed expression of collagen II, the beta-1 integrin, and E-cadherin-markers of epithelial-mesenchymal transition. The use of RT-qPCR combined with immunohistochemical study made it possible to identify atypical cells, which can be regarded as precancerous changes, in individual patients.

Jonna S, Feldman RA, Swensen J, et al.
Detection of NRG1 Gene Fusions in Solid Tumors.
Clin Cancer Res. 2019; 25(16):4966-4972 [PubMed] Related Publications

Ahmadvand M, Eskandari M, Khakpour G, et al.
Identification of MiR-125a as a Novel Plasma Diagnostic Biomarker for Chronic Lymphoblastic Leukemia.
Clin Lab. 2019; 65(3) [PubMed] Related Publications
Background: Chronic lymphocytic leukemia (CLL) is a type of malignancy in which the bone marrow makes too many lymphocytes. MicroRNAs (miRNAs) are endogenous short (~22-nucleotides) non-protein-coding regulatory RNA molecules with key roles in cellular and molecular processes linked to different cancers including CLL. Re-cently, some investigations have demonstrated that miR-125a downregulation is correlated with the expression of P53, NRG1 and ERBB2. Methods: In this study, samples including 38 patients with CLL and 25 healthy individuals were collected. We used quantitative real-time PCR (qRT-PCR) to assess the expression of miR-125a in plasma of the CLL patients in comparison with healthy controls. Moreover, we used the Kyoto Encyclopedia of Genes and Genomes (KEGG) signaling pathway analysis on miR-125a targets in the DAVID database in order to investigate the potential role of miR-125a in cancer pathways. MiR-125a exerted a variety of roles in the cancer pathway via downregulating target genes including ERBB2. Results: The expression of miR-125a dramatically decreased (~2-fold) in the patients with CLL compared with the healthy controls (p = 0.03). Furthermore, overexpression of miR-125a was associated with different CLL staging and B symptoms (all at p < 0.05). The KEGG pathway enrichment analysis demonstrated the eight statistically related KEGG signaling pathways with miR-125a targetome. Conclusions: The results suggested that the miR-125a expression level could be a novel potential biomarker for CLL prognosis.

Ma S, Jia S, Ren Y, et al.
ErbB3 Ligand Heregulin1 Is a Major Mitogenic Factor for Uncontrolled Lung Cancer Cell Proliferation.
Neoplasia. 2019; 21(4):343-352 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
There are seven ligands for the epidermal growth factor receptor (EGFR) ErbB1 and two ligands for ErbB3. EGFR can form a homodimer or a heterodimer with ErbB3. In this study, we investigated whether homodimers or heterodimers, and which ligand, play a major role in cancer development, with the goal of ultimately identifying therapeutic targets. We demonstrated that the ErbB3 ligand heregulin1 is the strongest mitogenic factor for non-small cell lung cancer cells and is more potent in activating EGFRmut-ErbB3 heterodimers than EGFRwt-ErbB3 heterodimers. We discovered that four of the seven EGFR ligands inhibited heregulin1-induced EGFRwt-ErbB3 activation and cell proliferation by promoting dephosphorylation of heregulin1-induced ErbB3 phosphorylation, whereas the other three did not exhibit such inhibition. Importantly, those four EGFR ligands did not inhibit heregulin1-induced EGFRmut-ErbB3 activation and proliferation of cells with EGFR mutants. We demonstrated that ErbB3 was overexpressed in the lung cancer cells but not in the adjacent normal alveoli or stromal tissue. EGFR and heregulin1 were also highly expressed in lung cancer cells. We conclude that the overexpression of heregulin1, ErbB3, and EGFR mutant renders uncontrolled cell proliferation.

Gao Y, Yin J, Tu Y, Chen YC
Theaflavin-3,3'-Digallate Suppresses Human Ovarian Carcinoma OVCAR-3 Cells by Regulating the Checkpoint Kinase 2 and p27 kip1 Pathways.
Molecules. 2019; 24(4) [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Theaflavin-3,3'-digallate (TF3) is a unique polyphenol in black tea. Epidemiological studies have proved that black tea consumption decreases the incidence rate of ovarian cancer. Our former research demonstrated that TF3 inhibited human ovarian cancer cells. Nevertheless, the roles of checkpoint kinase 2 (Chk2) and p27 kip1 (p27) in TF3-mediated inhibition of human ovarian cancer cells have not yet been investigated. In the current study, TF3 enhanced the phosphorylation of Chk2 to modulate the ratio of pro/anti-apoptotic Bcl-2 family proteins to initiate intrinsic apoptosis in a p53-independent manner and increased the expression of death receptors to activate extrinsic apoptosis in OVCAR-3 human ovarian carcinoma cells. In addition, TF3 up-regulated the expression of p27 to induce G0/G1 cell cycle arrest in OVCAR-3 cells. Our study indicated that Chk2 and p27 were vital anticancer targets of TF3 and provided more evidence that TF3 might be a potent agent to be applied as adjuvant treatment for ovarian cancer.

Quaas A, Heydt C, Waldschmidt D, et al.
Alterations in ERBB2 and BRCA and microsatellite instability as new personalized treatment options in small bowel carcinoma.
BMC Gastroenterol. 2019; 19(1):21 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
BACKGROUND: Carcinomas of the small bowel are rare tumors usually with dismal prognosis. Most recently, some potentially treatable molecular alterations were described. We emphasize the growing evidence of individualized treatment options in small bowel carcinoma.
METHODS: We performed a DNA- based multi-gene panel using ultra-deep sequencing analysis (including 14 genes with up to 452 amplicons in total; KRAS, NRAS, HRAS, BRAF, DDR2, ERBB2, KEAP1, NFE2L2, PIK3CA, PTEN, RHOA, BRCA1, BRCA2 and TP53) as well as an RNA-based gene fusion panel including ALK, BRAF, FGFR1, FGFR2, FGFR3, MET, NRG1, NTRK1, NTRK2, NTRK3, RET and ROS1 on eleven formalin fixed and paraffin embedded small bowel carcinomas. Additionally, mismatch-repair-deficiency was analyzed by checking the microsatellite status using the five different mononucleotide markers BAT25, BAT26, NR-21, NR-22 and NR-27 and loss of mismatch repair proteins using four different markers (MLH1, MSH6, MSH2, PMS2).
RESULTS: In five out of eleven small bowel carcinomas we found potentially treatable genetic alterations. Three patients demonstrated pathogenic (class 5) BRCA1 or BRCA2 mutations - one germline-related in a mixed neuroendocrine-non neuroendocrine neoplasm (MiNEN). Two additional patients revealed an activating ERBB2 mutation or PIK3CA mutation. Furthermore two tumors were highly microsatellite-instable (MSI-high), in one case associated to Lynch-syndrome. We did not find any gene fusions.
CONCLUSION: Our results underscore, in particular, the relevance of potentially treatable molecular alterations (like ERBB2, BRCA and MSI) in small bowel carcinomas. Further studies are needed to proof the efficacy of these targeted therapies in small bowel carcinomas.

Wang T, Liu Y, Liu Q, et al.
Integrative proteomic analysis reveals potential high-frequency alternative open reading frame-encoded peptides in human colorectal cancer.
Life Sci. 2018; 215:182-189 [PubMed] Related Publications
Identification of alternative open reading frame-encoded peptides (AEPs) for the diagnosis of colorectal cancer at the proteome level is largely unexplored because of a lack of comprehensive proteomics data. Here, we performed a comprehensive integrative analysis of mass spectral data published by Clinical Proteomic Tumor Analysis Consortium and characterized 93 high-confident AEPs encoded within 75 genes. There are four cancer-related genes appeared to have AEPs identified frequently in >20 out of 95 colorectal cancer samples, including ABCF2, AR, RBM10 and NRG1. Further network analysis of the identified AEPs found the enrichment of novel AEPs within hormone androgen receptor and a highly-modularised network with 42 genes associated with patient survival. Our results not only suggested a mechanistic view of how AEPs work in cancer progression, but also shed light on somatic amino acid mutations in AEPs, which might be overlooked previously because of their low frequencies. In particular, potential high-frequency mutations in 77 samples associated with EDARADD may contribute to the discovery of new biomarkers and the development of innovative therapeutic approaches.

Zhang R, Zhou F, Cheng L, et al.
Genetic variants in nucleotide excision repair pathway predict survival of esophageal squamous cell cancer patients receiving platinum-based chemotherapy.
Mol Carcinog. 2018; 57(11):1553-1565 [PubMed] Related Publications
The benefits of platinum-based chemotherapy (PBC) on survival of esophageal squamous cell carcinoma (ESCC) patients are inexplicit due to the varied therapeutic effects. Nucleotide excision repair (NER) pathway plays a vital role in removing platinum-DNA adducts in tumor cells and hence may modulate the therapeutic effect and survival outcome. The present study assessed the associations of 26 potentially functional regulatory single nucleotide polymorphisms (rSNPs) in nine core NER genes with disease-free survival (DFS) and overall survival (OS) in 339 ESCC patients. We found that ERCC2 rs2097215 T and rs3916788 A, ERCC5 rs3759497 A and XPC rs3731054 C alleles were associated with unfavorable DFS. Patients carrying high-risk allele group (HRG, 5-8 risk alleles) had a significantly shorter DFS, compared with those carrying low-risk alleles (LRG, 0-4 risk alleles) [adjusted hazards ratio (HR

Vasmatzis G, Wang X, Smadbeck JB, et al.
Chromoanasynthesis is a common mechanism that leads to ERBB2 amplifications in a cohort of early stage HER2
BMC Cancer. 2018; 18(1):738 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
BACKGROUND: HER2 positive (HER2+) breast cancers involve chromosomal structural alterations that act as oncogenic driver events.
METHODS: We interrogated the genomic structure of 18 clinically-defined HER2+ breast tumors through integrated analysis of whole genome and transcriptome sequencing, coupled with clinical information.
RESULTS: ERBB2 overexpression in 15 of these tumors was associated with ERBB2 amplification due to chromoanasynthesis with six of them containing single events and the other nine exhibiting multiple events. Two of the more complex cases had adverse clinical outcomes. Chromosomes 8 was commonly involved in the same chromoanasynthesis with 17. In ten cases where chromosome 8 was involved we observed NRG1 fusions (two cases), NRG1 amplification (one case), FGFR1 amplification and ADAM32 or ADAM5 fusions. ERBB3 over-expression was associated with NRG1 fusions and EGFR and ERBB3 expressions were anti-correlated. Of the remaining three cases, one had a small duplication fully encompassing ERBB2 and was accompanied with a pathogenic mutation.
CONCLUSION: Chromoanasynthesis involving chromosome 17 can lead to ERBB2 amplifications in HER2+ breast cancer. However, additional large genomic alterations contribute to a high level of genomic complexity, generating the hypothesis that worse outcome could be associated with multiple chromoanasynthetic events.

Shimizu R, Tanaka M, Tsutsumi S, et al.
EWS-FLI1 regulates a transcriptional program in cooperation with Foxq1 in mouse Ewing sarcoma.
Cancer Sci. 2018; 109(9):2907-2918 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
EWS-FLI1 constitutes an oncogenic transcription factor that plays key roles in Ewing sarcoma development and maintenance. We have recently succeeded in generating an ex vivo mouse model for Ewing sarcoma by introducing EWS-FLI1 into embryonic osteochondrogenic progenitors. The model well recapitulates the biological characteristics, small round cell morphology, and gene expression profiles of human Ewing sarcoma. Here, we clarified the global DNA binding properties of EWS-FLI1 in mouse Ewing sarcoma. GGAA microsatellites were found to serve as binding sites of EWS-FLI1 albeit with less frequency than that in human Ewing sarcoma; moreover, genomic distribution was not conserved between human and mouse. Nevertheless, EWS-FLI1 binding sites within GGAA microsatellites were frequently associated with the histone H3K27Ac enhancer mark, suggesting that EWS-FLI1 could affect global gene expression by binding its target sites. In particular, the Fox transcription factor binding motif was frequently observed within EWS-FLI1 peaks and Foxq1 was identified as the cooperative partner that interacts with the EWS portion of EWS-FLI1. Trib1 and Nrg1 were demonstrated as target genes that are co-regulated by EWS-FLI1 and Foxq1, and are important for cell proliferation and survival of Ewing sarcoma. Collectively, our findings present novel aspects of EWS-FLI1 function as well as the importance of GGAA microsatellites.

Zhang TT, Qu N, Sun GH, et al.
NRG1 regulates redox homeostasis via NRF2 in papillary thyroid cancer.
Int J Oncol. 2018; 53(2):685-693 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Thyroid cancer is a common endocrine cancer, of which papillary thyroid cancer (PTC) is the most common type. Neuregulin 1 (NRG1), a glycoprotein mediating cell‑cell signaling, plays vital roles in cellular activities; however, its role in PTC progression remains poorly understood. In this study, we performed immunohistochemistry in 196 samples from patients and found that NRG1, a potential prognostic marker is highly expressed in PTC compared with adjacent normal tissues. Cell Counting kit‑8 (CCK‑8) and clone formation assays indicated that NRG1 is essential for PTC cell viability and proliferation, probably by regulating redox homeostasis, which was implied by ROS generation analysis and intracellular GSH activity assay. Western blot analysis and RT‑qPCR revealed that NRG1 regulates ERK pathway and the pivotal regulator of cellular redox status, nuclear factor E2‑related factor 2 (NRF2), which maintains moderate reactive oxygen species (ROS) levels through a set of antioxidant response element (ARE)‑containing genes. The immunohistochemical scoring of 196 PTC samples and the analysis of the data of 490 patients from The Cancer Genome Atlas (TCGA) reveled a positive association between the expression of NRG1 and NRF2. Since the presence of NRG1 regulates redox homeostasis through NRF2, protecting PTC cells from the accumulation of ROS and ROS‑induced cell death, NRG1 may thus prove to be a potential therapeutic target in the treatment of thyroid cancer.

Wilson FH, Politi K
ERBB Signaling Interrupted: Targeting Ligand-Induced Pathway Activation.
Cancer Discov. 2018; 8(6):676-678 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
A patient with advanced lung adenocarcinoma harboring a

Fei J, Ishii H, Hoeksema MA, et al.
NDF, a nucleosome-destabilizing factor that facilitates transcription through nucleosomes.
Genes Dev. 2018; 32(9-10):682-694 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Our understanding of transcription by RNA polymerase II (Pol II) is limited by our knowledge of the factors that mediate this critically important process. Here we describe the identification of NDF, a nucleosome-destabilizing factor that facilitates Pol II transcription in chromatin. NDF has a PWWP motif, interacts with nucleosomes near the dyad, destabilizes nucleosomes in an ATP-independent manner, and facilitates transcription by Pol II through nucleosomes in a purified and defined transcription system as well as in cell nuclei. Upon transcriptional induction, NDF is recruited to the transcribed regions of thousands of genes and colocalizes with a subset of H3K36me3-enriched regions. Notably, the recruitment of NDF to gene bodies is accompanied by an increase in the transcript levels of many of the NDF-enriched genes. In addition, the global loss of NDF results in a decrease in the RNA levels of many genes. In humans, NDF is present at high levels in all tested tissue types, is essential in stem cells, and is frequently overexpressed in breast cancer. These findings indicate that NDF is a nucleosome-destabilizing factor that is recruited to gene bodies during transcriptional activation and facilitates Pol II transcription through nucleosomes.

Chen J, Ren Q, Cai Y, et al.
Mesenchymal stem cells drive paclitaxel resistance in ErbB2/ErbB3-coexpressing breast cancer cells via paracrine of neuregulin 1.
Biochem Biophys Res Commun. 2018; 501(1):212-219 [PubMed] Related Publications
We had previously demonstrated that increased expression of ErbB3 is required for ErbB2-mediated paclitaxel resistance in breast cancer cells. In the present study, we have explored the possible role of mesenchymal stem cells (MSCs) in regulating the paclitaxel-sensitivity of ErbB2/ErbB3-coexpressing breast cancer cells. We show that human umbilical cord-derived MSCs express significantly higher level of neuregulin-1 as compared with ErbB2/ErbB3-coexpressing breast cancer cells themselves. Coculture or treatment with conditioned medium of MSCs not only decreases the anti-proliferation effect of paclitaxel on ErbB2/ErbB3-coexpressing breast cancer cells, but also significantly inhibits paclitaxel-induced apoptosis. We further demonstrate that this MSCs-drived paclitaxel resistance in ErbB2/ErbB3-coexpressing breast cancer cells could be attributed to upregulation of Survivin via paracrine effect of NRG-1/ErbB3/PI-3K/Akt signaling, as either specific knockdown expression of ErbB3, or blocking of downstream PI-3K/Akt signaling, or specific inhibition of Survivin can completely reverse this effect. Moreover, targeted knockdown of NRG-1 expression in MSCs abrogates theirs effect on paclitaxel sensitivity of ErbB2/ErbB3-coexpressing breast cancer cells. Taken together, our study indicate that paracrine of NRG-1 by MSCs induces paclitaxel resistance in ErbB2/ErbB3-coexpressing breast cancer cells through PI-3K/Akt signaling-dependent upregulation of Survivin. Our findings suggest that simultaneously targeting mesenchymal stem cells in tumor microenvironment may be a novel strategy to overcome paclitaxel resistance in patients with ErbB2/ErbB3-coexpressing breast cancer.

Cabrera RM, Mao SPH, Surve CR, et al.
A novel neuregulin - jagged1 paracrine loop in breast cancer transendothelial migration.
Breast Cancer Res. 2018; 20(1):24 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
BACKGROUND: The interaction of breast cancer cells with other cells in the tumor microenvironment plays an important role in metastasis. Invasion and intravasation, two critical steps in the metastatic process, are influenced by these interactions. Macrophages are of particular interest when it comes to studying tumor cell invasiveness. Previous studies have shown that there is paracrine loop signaling between breast cancer cells and macrophages involving colony stimulating factor 1 (CSF-1) produced by tumor cells and epidermal growth factor (EGF) production by macrophages. In this paper, we identify a novel paracrine loop between tumor cells and macrophages involving neuregulin (NRG1) and notch signaling.
METHODS: The aim of this study was to determine the role of NRG1, a ligand of the ErbB3 receptor, in macrophage stimulation of tumor cell transendothelial migration and intravasation. We used fluorescence-activated cell sorting (FACS) and western blot to determine ErbB3 and NRG1 expression, respectively. An in vitro transendothelial migration (iTEM) assay was used to examine the effects of short hairpin (sh)RNA targeting NRG1 in tumor cells and clustered regularly interspaced short palindromic repeats (CRISPR) knockout of jagged 1 (JAG1) in macrophages. Orthotopic xenograft injections in mice were used to confirm results in vivo.
RESULTS: In our system, macrophages were the primary cells showing expression of ErbB3, and a blocking antibody against ErbB3 resulted in a significant decrease in macrophage-induced transendothelial migration of breast cancer cells. Stimulation of macrophages with NRG1 upregulated mRNA and protein expression of JAG1, a ligand of the Notch receptor, and JAG1 production by macrophages was important for transendothelial migration of tumor cells.
CONCLUSIONS: This study demonstrates that stimulation of macrophages by tumor cell NRG1 can enhance transendothelial migration and intravasation. We also demonstrate that this effect is due to induction of macrophage JAG1, an important ligand of the Notch signaling pathway.

Liu M, Solomon W, Cespedes JC, et al.
Neuregulin-1 attenuates experimental cerebral malaria (ECM) pathogenesis by regulating ErbB4/AKT/STAT3 signaling.
J Neuroinflammation. 2018; 15(1):104 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
BACKGROUND: Human cerebral malaria (HCM) is a severe form of malaria characterized by sequestration of infected erythrocytes (IRBCs) in brain microvessels, increased levels of circulating free heme and pro-inflammatory cytokines and chemokines, brain swelling, vascular dysfunction, coma, and increased mortality. Neuregulin-1β (NRG-1) encoded by the gene NRG1, is a member of a family of polypeptide growth factors required for normal development of the nervous system and the heart. Utilizing an experimental cerebral malaria (ECM) model (Plasmodium berghei ANKA in C57BL/6), we reported that NRG-1 played a cytoprotective role in ECM and that circulating levels were inversely correlated with ECM severity. Intravenous infusion of NRG-1 reduced ECM mortality in mice by promoting a robust anti-inflammatory response coupled with reduction in accumulation of IRBCs in microvessels and reduced tissue damage.
METHODS: In the current study, we examined how NRG-1 treatment attenuates pathogenesis and mortality associated with ECM. We examined whether NRG-1 protects against CXCL10- and heme-induced apoptosis using human brain microvascular endothelial (hCMEC/D3) cells and M059K neuroglial cells. hCMEC/D3 cells grown in a monolayer and a co-culture system with 30 μM heme and NRG-1 (100 ng/ml) were used to examine the role of NRG-1 on blood brain barrier (BBB) integrity. Using the in vivo ECM model, we examined whether the reduction of mortality was associated with the activation of ErbB4 and AKT and inactivation of STAT3 signaling pathways. For data analysis, unpaired t test or one-way ANOVA with Dunnett's or Bonferroni's post test was applied.
RESULTS: We determined that NRG-1 protects against cell death/apoptosis of human brain microvascular endothelial cells and neroglial cells, the two major components of BBB. NRG-1 treatment improved heme-induced disruption of the in vitro BBB model consisting of hCMEC/D3 and human M059K cells. In the ECM murine model, NRG-1 treatment stimulated ErbB4 phosphorylation (pErbB4) followed by activation of AKT and inactivation of STAT3, which attenuated ECM mortality.
CONCLUSIONS: Our results indicate a potential pathway by which NRG-1 treatment maintains BBB integrity in vitro, attenuates ECM-induced tissue injury, and reduces mortality. Furthermore, we postulate that augmenting NRG-1 during ECM therapy may be an effective adjunctive therapy to reduce CNS tissue injury and potentially increase the effectiveness of current anti-malaria therapy against human cerebral malaria (HCM).

Shi J, Li F, Yao X, et al.
The HER4-YAP1 axis promotes trastuzumab resistance in HER2-positive gastric cancer by inducing epithelial and mesenchymal transition.
Oncogene. 2018; 37(22):3022-3038 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Trastuzumab is the only target to be approved as the first-line treatment of HER2 positive metastatic gastric cancer, but ubiquitous resistance decreases its therapeutic benefit. In this study, we found HER4, phosphorylation HER4 (p-HER4) and the mesenchymal marker Vimentin increased in trastuzumab-resistant cells (MKN45TR and NCI-N87TR), while epithelial markers expressions in trastuzumab-resistant cell lines and animal models decreased. Additionally, silencing HER4 prevented the epithelial-mesenchymal transition and led to decreased proliferation and migration in vitro and in vivo. The expression of YAP1, a vital downstream interacted target of HER4, decreased when HER4 was knocked down. Interestingly, stimulation of NRG1 could compromise the inhibitory impact and rescue cell survival; whereas, transfection of siYAP1 sensitized trastuzumab-treated cells. Expression analysis of the proteins in patient-derived xenograft model (PDX) mice showed that HER4, p-HER4, YAP1, and Vimentin were clearly upregulated in the trastuzumab-resistant mice compared to mice without trastuzumab resistance. However, HER2 and E-cadherin were downregulated in response to continuous treatment with trastuzumab. These findings elucidated that the central role of the HER4-YAP1 axis in trastuzumab resistance of HER2-positive gastric cancer cells through induction of EMT. Hence, regulating the HER4-YAP1 axis might be a promising strategy for clinical interventions in patients with HER2-positive gastric cancer.

Yamashita N, Saito N, Zhao S, et al.
Heregulin-induced cell migration is promoted by aryl hydrocarbon receptor in HER2-overexpressing breast cancer cells.
Exp Cell Res. 2018; 366(1):34-40 [PubMed] Related Publications
HER2 overexpression accounts for approximately 15-20% of all breast cancers. We have shown that HER2 overexpression leads to elevated expression of the aryl hydrocarbon receptor (AhR) in breast cancer cells. In this study, firstly, we showed that AhR expression was up-regulated by treatment with the HER3 ligand heregulin (HRG) in HER2-overexpressing breast cancer cell lines. Induction of AhR was mediated by transcriptional activation of the region of AhR promoter corresponding to - 190 to - 100 bp. In addition, HRG treatment elicited nuclear translocation of AhR. To investigate the role of AhR in HRG-HER2/HER3 signaling in HER2-overexpressing cells, we established AhR knockout (KO) HER2-overexpressing cells to perform wound-healing assays. HRG-induced cell migration was markedly attenuated by AhR KO. HRG-induced cell migration was associated with increased expression of the inflammatory cytokines interleukin (IL)-6 and IL-8 in wild type cells, but not in AhR KO cells. These results elucidate that AhR is an important factor for the malignancy in HER2 overexpressing breast cancers.

Jones DC, Scanteianu A, DiStefano M, et al.
Analysis of copy number loss of the ErbB4 receptor tyrosine kinase in glioblastoma.
PLoS One. 2018; 13(1):e0190664 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Current treatments for glioblastoma multiforme (GBM)-an aggressive form of brain cancer-are minimally effective and yield a median survival of 14.6 months and a two-year survival rate of 30%. Given the severity of GBM and the limitations of its treatment, there is a need for the discovery of novel drug targets for GBM and more personalized treatment approaches based on the characteristics of an individual's tumor. Most receptor tyrosine kinases-such as EGFR-act as oncogenes, but publicly available data from the Cancer Cell Line Encyclopedia (CCLE) indicates copy number loss in the ERBB4 RTK gene across dozens of GBM cell lines, suggesting a potential tumor suppressor role. This loss is mutually exclusive with loss of its cognate ligand NRG1 in CCLE as well, more strongly suggesting a functional role. The availability of higher resolution copy number data from clinical GBM patients in The Cancer Genome Atlas (TCGA) revealed that a region in Intron 1 of the ERBB4 gene was deleted in 69.1% of tumor samples harboring ERBB4 copy number loss; however, it was also found to be deleted in the matched normal tissue samples from these GBM patients (n = 81). Using the DECIPHER Genome Browser, we also discovered that this mutation occurs at approximately the same frequency in the general population as it does in the disease population. We conclude from these results that this loss in Intron 1 of the ERBB4 gene is neither a de novo driver mutation nor a predisposing factor to GBM, despite the indications from CCLE. A biological role of this significantly occurring genetic alteration is still unknown. While this is a negative result, the broader conclusion is that while copy number data from large cell line-based data repositories may yield compelling hypotheses, careful follow up with higher resolution copy number assays, patient data, and general population analyses are essential to codify initial hypotheses prior to investing experimental resources.

He H, Li W, Liyanarachchi S, et al.
The Role of NRG1 in the Predisposition to Papillary Thyroid Carcinoma.
J Clin Endocrinol Metab. 2018; 103(4):1369-1379 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Context: Previous genome-wide association studies have shown that single-nucleotide polymorphism (SNP) rs2439302 in chromosome 8p12 is significantly associated with papillary thyroid carcinoma (PTC) risk and dysregulated NRG1 expression. The underlying mechanisms remain to be discovered.
Objective: To evaluate the expression of NRG1 isoforms, candidate functional variants, and potential genes downstream of NRG1 in thyroid tissue.
Methods: Quantitative reverse transcription polymerase chain reaction was applied for gene expression analysis. SNaPshot assay, haplotype, and computer analyses were performed to evaluate candidate functional variants. Other functional assays [chromatin immunoprecipitation (ChIP) assay, luciferase assay, small interfering RNA knockdown, and RNA sequencing] were performed.
Results: Three NRG1 isoforms (NM_004495, NM_013958, and NM_001160008) tested were highly expressed in thyroid tissue. The expression levels of the three isoforms were significantly correlated with the genotypes of rs2439302. A DNA block of ~32 kb containing the risk G allele of rs2439302 was revealed, harboring multiple candidate functional variants. ChIP assay for active chromatin markers indicated at least nine regions in the DNA block showing strong H3Kme1 and H3K27Ac signals in thyroid tissue. Luciferase reporter assays revealed differential allelic activities associated with seven SNPs. Knocking down NRG1 in primary thyroid cells revealed downstream or interacting genes related to NRG1.
Conclusions: Our data suggest a role for transcriptional regulation of NRG1 in the predisposition to PTC.

Subsomwong P, Miftahussurur M, Uchida T, et al.
Prevalence, risk factors, and virulence genes of Helicobacter pylori among dyspeptic patients in two different gastric cancer risk regions of Thailand.
PLoS One. 2017; 12(10):e0187113 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Gastric cancer risk is varied among different regions of Thailand. We examined the characteristics of Helicobacter pylori infection in two regions of Thailand. The H. pylori status of 273 dyspeptic patients (136 from the South and 137 from the North; a low and high incidence of gastric cancer region, respectively) was evaluated, and virulence genotypes (cagA, vacA, hrgA and jhp0562-positive/β-(1,3)galT) were determined. The overall H. pylori infection rate was 34.1% (93/273). The prevalence was higher in the North than in the South (50.4% vs. 17.6%, P <0.001) and was significantly higher among individuals with the following characteristics: low income, birthplace in the Northeast or North regions, agricultural employment, or consumption of alcohol or unboiling water. Among these socio-demographic determinants, region was an independent risk factor for H. pylori infection (odds ratio = 6.37). Patients including both H. pylori infected and uninfected cases who lived in the North had significantly more severe histological scores than those in the South. In contrast, among H. pylori-positive cases, patients in the South had significantly more severe histological scores than those in the North. Of the 74 strains cultured, 56.8% carried Western-type cagA, with a higher proportion in the South than in the North (76.2% vs. 49.1%, P = 0.05). In disagreement with the current consensus, patients infected with the Western-type cagA strains had more severe inflammation scores in the antrum than those infected with the East Asian-type cagA strains (P = 0.027). Moreover, Western-type cagA strains induced more severe histological scores in patients from the South than those of either genotype from the North. Other virulence genes had no influence on histological scores. The incidence of gastric cancer in Thailand was different among regions and corresponded to differences in the prevalence of H. pylori infection. More careful follow-up for patients in the South will be required, even if they are infected with H. pylori carrying Western-type cagA.

Yang L, Li Y, Shen E, et al.
NRG1-dependent activation of HER3 induces primary resistance to trastuzumab in HER2-overexpressing breast cancer cells.
Int J Oncol. 2017; 51(5):1553-1562 [PubMed] Related Publications
This study was conducted to determine the role of neuregulin 1 (NRG1)-dependent human epidermal growth factor receptor 3 (HER3) activation in trastuzumab primary resistance, and to observe the inhibitory effect of HER3 monoclonal antibody on HER2-overexpressing breast cancer cells. BT474 cells (trastuzumab sensitive) and MDA-MB-453 cells (trastuzumab resistant) were first stimulated with NRG1 and then treated with either trastuzumab, HER3 antibody, or a combination of both. The expression of phospho human epidermal growth factor receptor 2 (p-HER2), phospho human epidermal growth factor receptor 3 (p-HER3), phospho protein kinase B (p-Akt) and phospho mitogen-activated protein kinase (p-MAPK) were detected by western blotting. Apoptosis was detected by flow cytometry. Cell viability was detected by MTT assay. Without NRG1 stimulation, trastuzumab treatment significantly down-regulated the expression of p-HER2, increased early apoptosis, and decreased cell viability in BT474 cells. After NRG1 stimulation, the aforementioned effects weakened or disappeared in the trastuzumab treatment group, whereas in the HER3 antibody treatment group, there was significant downregulation in p-HER3 expression and increase in early apoptosis of BT474 cells. In MDA-MB-453 cells, the HER3 antibody significantly downregulated both p-HER2 and p-HER3 and promoted early apoptosis after NRG1 stimulation, however, trastuzumab hardly played a role. p-Akt and p-MAPK were also significantly downregulated by the HER3 antibody after NRG1 stimulation. The expressions of p-HER2, p-HER3, p-Akt and p-MAPK were all downregulated after HER3 gene silencing, compared to the control. NRG1-dependent activation of HER3 induces primary resistance to trastuzumab in HER2-overexpressing breast cancer cells. HER3 monoclonal antibody combined with trastuzumab may serve as a treatment choice for patients with primary resistance to trastuzumab.

Wang Y, Zhang Y, Lu Q, et al.
NRG-1 Stimulates Serum DJ-1 Increase in Breast Cancers.
Pathol Oncol Res. 2019; 25(1):71-79 [PubMed] Related Publications
To explore the relationship between the expression of DJ-1/HER3 and tumor grade in breast cancer, and investigate the effect of HER3 on NRG-1-mediated serum DJ-1 level in vivo. We analyze the expression level of DJ-1 and HER3 in 68 patients with different grades of breast cancer by immunostaining the tissue microarray. Besides, we investigated the serum DJ-1 level by ELISA. We found that the detectable DJ-1 protein expression is decreased, and the HER3 expression is increased in tumor tissue with the progression of breast cancer. There is a significant rise of DJ-1 in serum in vivo with the stimulation of NRG-1. Meanwhile, we found that HER3 knockdown abolishes NRG-1-induced serum DJ-1 increase and HER3 overexpress improves NRG-1-induced serum DJ-1 increase. This study provides a serum biomarker for breast cancer. The results showed that DJ-1 was associated with clinical stage of breast cancer, and NRG-1 increased the dissociation of HER3 and DJ-1, with promoting the level of DJ-1 in peripheral blood. It is suggested that the level of DJ-1 in peripheral blood may be conducive to assess the prognosis of patients with breast cancer and serum DJ-1 levels can serve as an indicator of therapeutic effectiveness for the development of HER3 targeting breast cancer antibody therapies.

Jones MR, Lim H, Shen Y, et al.
Successful targeting of the NRG1 pathway indicates novel treatment strategy for metastatic cancer.
Ann Oncol. 2017; 28(12):3092-3097 [PubMed] Related Publications
Background: NRG1 fusion-positive lung cancers have emerged as potentially actionable events in lung cancer, but clinical support is currently limited and no evidence of efficacy of this approach in cancers beyond lung has been shown.
Patients and methods: Here, we describe two patients with advanced cancers refractory to standard therapies. Patient 1 had lung adenocarcinoma and patient 2 cholangiocarcinoma. Whole-genome and transcriptome sequencing were carried out for these cases with select findings validated by fluorescence in situ hybridization.
Results: Both tumors were found to be positive for NRG1 gene fusions. In patient 1, an SDC4-NRG1 gene fusion was detected, similar gene fusions having been described in lung cancers previously. In patient 2, a novel ATP1B1-NRG1 gene fusion was detected. Cholangiocarcinoma is not a disease type in which NRG1 fusions had been described previously. Integrative genome analysis was used to assess the potential functional significance of the detected genomic events including the gene fusions, prioritizing therapeutic strategies targeting the HER-family of growth factor receptors. Both patients were treated with the pan HER-family kinase inhibitor afatinib and both displayed significant and durable response to treatment. Upon progression sites of disease were sequenced. The lack of obvious genomic events to describe the disease progression indicated that broad transcriptomic or epigenetic mechanisms could be attributed to the lack of prolonged response to afatinib.
Conclusion: These observations lend further support to the use of pan HER-tyrosine kinase inhibitors for the treatment of NRG1 fusion-positive in both cancers of lung and hepatocellular origin and indicate more broadly that cancers found to be NRG1 fusion-positive may benefit from such a clinical approach regardless of their site of origin.
Clinical trial information: Personalized Oncogenomics (POG) Program of British Columbia: Utilization of Genomic Analysis to Better Understand Tumour Heterogeneity and Evolution (NCT02155621).

Trombetta D, Rossi A, Fabrizio FP, et al.
NRG1-ErbB Lost in Translation: A New Paradigm for Lung Cancer?
Curr Med Chem. 2017; 24(38):4213-4228 [PubMed] Related Publications
BACKGROUND: Molecular lesions of the NRG1 gene were recently described as a new molecular feature of Invasive Mucinous Adenocarcinoma of the lung. The NRG1 chimeric ligand leads to aberrant activation of the ErbB2/ErbB3 signaling via PI3K-AKT and MAPK cellular cascades. This review aims to highlight the current knowledge about the ErbB network and the effect of NRG1 deregulation in lung cancer and their merger into the ErbB/PI3K-AKT axis modulation by current pharmacologic strategies.
METHODS: We performed a structured search of bibliographic databases for peer-reviewed literature to outline the state of the art with regard ErbB signaling deregulation and NRG1 function in lung cancer. The quality of retrieved papers was assessed using standard tools and one hundred thirty-five were included in the review. In many papers the molecular lesions affecting the ErbB receptors in lung cancer but also in other type of solid tumors were updated. Papers describing the physiological role of NRG1 in cells was also screened for the review preparation, as well as the paper reporting NRG1 fusions in lung cancer and their implication in aberrant ErbB pathway activation.
RESULTS AND CONCLUSION: Overall, this review highpoints how the knowledge of new molecular mechanisms of ErbB pathway deregulation may help in gaining new insights into the molecular status of lung cancer patients and unveil a novel molecular markers of patients' stratification. Moreover, this ultimately led the selection of new compounds designed to inhibit the bound between Nrg1-ErbB3 as a good alternative way to block the ErbB intracellular signaling.

Son HY, Hwangbo Y, Yoo SK, et al.
Genome-wide association and expression quantitative trait loci studies identify multiple susceptibility loci for thyroid cancer.
Nat Commun. 2017; 8:15966 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Thyroid cancer is the most common cancer in Korea. Several susceptibility loci of differentiated thyroid cancer (DTC) were identified by previous genome-wide association studies (GWASs) in Europeans only. Here we conducted a GWAS and a replication study in Koreans using a total of 1,085 DTC cases and 8,884 controls, and validated these results using expression quantitative trait loci (eQTL) analysis and clinical phenotypes. The most robust associations were observed in the NRG1 gene (rs6996585, P=1.08 × 10

Smith E, Palethorpe HM, Hayden AL, et al.
Fibroblasts derived from oesophageal adenocarcinoma differ in DNA methylation profile from normal oesophageal fibroblasts.
Sci Rep. 2017; 7(1):3368 [PubMed] Article available free on PMC after 01/02/2020 Related Publications
Oesophageal adenocarcinoma (OAC) is increasing in incidence and has a poor prognosis. Tumour derived fibroblasts (TDFs) differ functionally from normal fibroblasts (NDFs), and play a pivotal role in cancer. Many of the differences persist through subculture. We measured the DNA methylation profiles of 10 TDFs from OAC with 12 NDF from normal oesophageal mucosa using Infinium HumanMethylation450 Beadchips and found they differed in multidimensional scaling analysis. We identified 4,856 differentially methylated CpGs (DMCs, adjusted p < 0.01 and absolute difference in average β-value > 0.15), of which 3,243 (66.8%) were hypomethylated in TDFs compared to NDFs. Hypermethylated DMCs were enriched at transcription start sites (TSSs) and in CpG islands, and depleted in transcriptional enhancers. Gene ontology analysis of genes with DMCs at TSSs revealed an enrichment of genes involved in development, morphogenesis, migration, adhesion, regulation of processes and response to stimuli. Alpha-smooth muscle actin (α-SMA) is a marker of activated fibroblasts and a poor prognostic indicator in OAC. Hypomethylated DMCs were observed at the TSS of transcript variant 2 of α-SMA, which correlated with an increase in α-SMA protein expression. These data suggest that DNA methylation may contribute to the maintenance of the TDF phenotype.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. NRG1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999