IER3

Gene Summary

Gene:IER3; immediate early response 3
Aliases: DIF2, IEX1, PRG1, DIF-2, GLY96, IEX-1, IEX-1L
Location:6p21.33
Summary:This gene functions in the protection of cells from Fas- or tumor necrosis factor type alpha-induced apoptosis. Partially degraded and unspliced transcripts are found after virus infection in vitro, but these transcripts are not found in vivo and do not generate a valid protein. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:radiation-inducible immediate-early gene IEX-1
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (6)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: IER3 (cancer-related)

Gao J, Liu L, Li G, et al.
LncRNA GAS5 confers the radio sensitivity of cervical cancer cells via regulating miR-106b/IER3 axis.
Int J Biol Macromol. 2019; 126:994-1001 [PubMed] Related Publications
OBJECTIVE: The aim of the study was to investigate the biological role of growth arrest special 5 (GAS5) in the radio sensitivity of cervical cancer (CC).
METHODS: The expressions of GAS5, miR-106b and immediate early response 3 (IER3) were detected in CC tissues and CC cell lines. RNA immunoprecipitation and RNA pull-down assays were performed to test the interaction of GAS5 and miR-106b. Dual-luciferase reporter assay was used to detect the regulatory relationship between miR-106b and IER3. The nude mouse model of CC was established for verifying the effects of GAS5 on the resistance of CC to radiation therapy in vivo.
RESULTS: GAS5 and IER3 were low expressed in the radio-resistant human CC tissues and SiHa cells, while miR-106b expression was highly expressed. Overexpression of IER3 or GAS5 enhanced radio-sensitivity in SiHa cells, while knockdown of IER3 or GAS5 decreased radio-sensitivity in ME180 cells. Moreover, GAS5 served as a miR-106b sponge, and miR-106b negatively regulated IER3 expression. Besides, GAS5 could regulate IER3 expression through miR-106b, and GAS5 enhanced the radio-sensitivity in CC cells through inhibiting miR-106b both in vitro and in vivo.
CONCLUSION: Overexpression of GAS5 enhanced the sensitivity of CC cells to radiation treatment via up-regulating IER3 through miR-106b.

Ye J, Zhang Y, Cai Z, et al.
Increased expression of immediate early response gene 3 protein promotes aggressive progression and predicts poor prognosis in human bladder cancer.
BMC Urol. 2018; 18(1):82 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Immediate early response gene 3 (IER3) is a stress-inducible gene, which exerts diverse effects in regulating cell apoptosis and cell cycle. Growing evidence shows that IER3 functions either as an oncogene or a tumor suppressor in various human cancers with a cancer type-dependent manner. However, the involvement of IER3 in human bladder cancer (BCa) has not been elucidated. In the current study, we aimed to investigate the expression pattern and the clinical significance of IER3 in BCa.
METHODS: We performed immunohistochemistry analysis to examine the subcellular localization and the expression levels of IER3 protein in 88 BCa specimens obtained from Department of Pathology in Massachusetts General Hospital. The associations of IER3 protein expression with various clinicopathological features and patients' overall survival were statistically evaluated.
RESULTS: IER3 protein was mainly expressed in the cytoplasm in bladder cancer cell. Of 88 BCa tissue specimens, 39 (44.3%) showed high expression of IER3 protein and 49 (55.7%) showed low expression. High IER3 protein expression was significantly associated with high pathologic nodal stage (p = 0.018). Kaplan-Meier analysis revealed that the overall survival of BCa patients with overexpression of IER3 protein was shorter than that with low expression (p < 0.01). Multivariate analysis by Cox regression further identified IER3 as an independent prognostic factor of BCa patients (p = 0.010).
CONCLUSIONS: Our findings suggest for the first time that the increased expression of IER3 protein may promote the aggressive progression of BCa. Importantly, IER3 may be a potential prognostic marker for BCa patients.

Li Y, Tan C, Liu L, Han L
Significance of blood and salivary IEX-1 expression in diagnosis of epithelial ovarian carcinoma.
J Obstet Gynaecol Res. 2018; 44(4):764-771 [PubMed] Free Access to Full Article Related Publications
AIM: This study assesses a clinical potential of immediate early responsive gene X-1 (IEX-1), also named IER3, in the diagnosis of epithelial ovarian carcinoma using blood and salivary specimens.
METHODS: Immediate early responsive gene X-1 was quantified in blood and saliva by real-time quantitative reverse transcription polymerase chain reaction in 26 cases of epithelial ovarian carcinoma, 37 cases of benign ovarian tumor and 55 cases of healthy women. The receiver operating characteristic (ROC) curve was used to evaluate the diagnostic efficacy of IEX-1.
RESULTS: Immediate early responsive gene X-1 was expressed in blood and saliva of the benign ovarian tumor group and the healthy women group, both at a level significantly higher than that of the ovarian carcinoma group (P < 0.017). There were no significant differences in IEX-1 expression in blood and saliva (P = 0.376 or 0.621, respectively) between the benign ovarian tumor and the healthy women group. Comparison of IEX-1 expression in blood between the ovarian carcinoma group and the benign ovarian tumor group or the healthy women group demonstrated the ROC-area under curves (AUC) of 0.947 or 0.929, respectively. In discriminating the ovarian carcinoma group from the benign ovarian tumor group, IEX-1 expression in blood demonstrated a sensitivity and specificity of 84.6% and 94.6%, respectively. Similarly, blood IEX-1 expression conferred a sensitivity of 84.6% and specificity of 90.9% in distinguishing the ovarian carcinoma group from the healthy women group. Moreover, salivary IEX-1 expression had ROC-AUC of 0.851 when compared between the ovarian carcinoma group and the benign ovarian tumor group or 0.896 when compared between the ovarian cancer group and the healthy women group. IEX-1 expression was able to discriminate the ovarian carcinoma group from the benign ovarian tumor group with a sensitivity and specificity of 65.4% and 94.6%, respectively, or the ovarian carcinoma from the healthy women with 92.3% sensitivity and 72.5% specificity.
CONCLUSION: These results suggest the clinical potential of IEX-1 expression in blood and saliva as a sensitive and specific diagnosis for epithelial ovarian carcinoma.

West AC, Tang K, Tye H, et al.
Identification of a TLR2-regulated gene signature associated with tumor cell growth in gastric cancer.
Oncogene. 2017; 36(36):5134-5144 [PubMed] Related Publications
Toll-like receptors (TLRs) are key regulators of innate immune responses, and their dysregulation is observed in numerous inflammation-associated malignancies, including gastric cancer (GC). However, the identity of specific TLRs and their molecular targets which promote the pathogenesis of human GC is ill-defined. Here, we sought to determine the clinical utility of TLR2 in human GC. TLR2 mRNA and protein expression levels were elevated in >50% of GC patient tumors across multiple ethnicities. TLR2 was also widely expressed among human GC cell lines, and DNA microarray-based expression profiling demonstrated that the TLR2-induced growth responsiveness of human GC cells corresponded with the up-regulation of six anti-apoptotic (BCL2A1, BCL2, BIRC3, CFLAR, IER3, TNFAIP3) and down-regulation of two tumor suppressor (PDCD4, TP53INP1) genes. The TLR2-mediated regulation of these anti-apoptotic and tumor suppressor genes was also supported by their increased and reduced expression, respectively, in two independent genetic GC mouse models (gp130

Locatelli SL, Careddu G, Stirparo GG, et al.
Dual PI3K/ERK inhibition induces necroptotic cell death of Hodgkin Lymphoma cells through IER3 downregulation.
Sci Rep. 2016; 6:35745 [PubMed] Free Access to Full Article Related Publications
PI3K/AKT and RAF/MEK/ERK pathways are constitutively activated in Hodgkin lymphoma (HL) patients, thus representing attractive therapeutic targets. Here we report that the PI3K/ERK dual inhibitor AEZS-136 induced significant cell proliferation inhibition in L-540, SUP-HD1, KM-H2 and L-428 HL cell lines, but a significant increase in necroptotic cell death was observed only in two out of four cell lines (L-540 and SUP-HD1). In these cells, AEZS-136-induced necroptosis was associated with mitochondrial dysfunction and reactive oxygen species (ROS) production. JNK was activated by AEZS-136, and AEZS-136-induced necroptosis was blocked by the necroptosis inhibitor necrostatin-1 or the JNK inhibitor SP600125, suggesting that JNK activation is required to trigger necroptosis following dual PI3K/ERK inhibition. Gene expression analysis indicated that the effects of AEZS-136 were associated with the modulation of cell cycle and cell death pathways. In the cell death-resistant cell lines, AEZS-136 induced the expression of immediate early response 3 (IER3) both in vitro and in vivo. Silencing of IER3 restored sensitivity to AEZS-136-induced necroptosis. Furthermore, xenograft studies demonstrated a 70% inhibition of tumor growth and a 10-fold increase in tumor necrosis in AEZS-136-treated animals. Together, these data suggest that dual PI3K/ERK inhibition might be an effective approach for improving therapeutic outcomes in HL.

Tran DDH, Koch A, Allister A, et al.
Treatment with MAPKAP2 (MK2) inhibitor and DNA methylation inhibitor, 5-aza dC, synergistically triggers apoptosis in hepatocellular carcinoma (HCC) via tristetraprolin (TTP).
Cell Signal. 2016; 28(12):1872-1880 [PubMed] Related Publications
Over 100 putative driver genes that are associated with multiple recurrently altered pathways were detected in hepatocellular carcinoma (HCC), suggesting that multiple pathways will need to be inhibited for any therapeutic method to be effective. In this context, functional modification of the RNA regulating protein, tristetraprolin (TTP) that regulates approximately 2500 genes represents a promising strategy in HCC therapy. Since overexpression of TTP induces cell death in all cell types, it would be useful to target the regulator of TTP. In this study, we applied an inhibitor to MAPKAP2 (MK2) that suppresses TTP function. Importantly, cBIOportal for HCC genomics shows that expression level of the MK2 gene correlates with clinical outcome of HCC. We show that upon treatment with MK2 inhibitor, all 5 HCC cell lines, namely HepG2, Huh7, Hep3B, HLE and HLF, reduced cell growth, especially HepG2 and Hep3B cells underwent apoptosis. Simultaneously, TTP target genes such as c-Myc, IER3 or AKT-1 were downregulated. Depletion of the TTP gene rescued cells from apoptosis and restored the TTP-target mRNA expression in the presence of MK2 inhibitor. Furthermore, MK2 was activated in primary HCC that express TTP at high level. The TTP gene was induced upon treatment with DNA methylation inhibitor, 5-aza dC or interferon in three other cell lines, Huh7, HLE or HLF. Upon treatment with MK2 inhibitor and 5-aza dC or interferon these cells underwent apoptosis. The depletion of TTP in these cells partially rescued them from apoptosis, suggesting that the MK2/TTP pathway plays a role in proliferation and maintenance of HCCs. Notably, under the same conditions human hepatocyte cells (THLE-2) did not undergo apoptosis. These data also suggest that MK2 inhibitor with 5-aza dC or interferon may be a useful tool for therapy against HCC.

Emma MR, Iovanna JL, Bachvarov D, et al.
NUPR1, a new target in liver cancer: implication in controlling cell growth, migration, invasion and sorafenib resistance.
Cell Death Dis. 2016; 7(6):e2269 [PubMed] Free Access to Full Article Related Publications
Sorafenib, an oral multikinase inhibitor, is the only approved agent for the treatment of advanced hepatocellular carcinoma (HCC). However, its benefits are modest, and as its mechanisms of action remain elusive, a better understanding of its anticancer effects is needed. Based on our previous study results, we investigated here the implication of the nuclear protein 1 (NUPR1) in HCC and its role in sorafenib treatment. NUPR1 is a stress-inducible protein that is overexpressed in various malignancies, but its role in HCC is not yet fully understood. We found that NUPR1 expression was significantly higher in primary human HCC samples than in the normal liver. Knockdown of NUPR1 significantly increased cell sensitivity to sorafenib and inhibited the cell growth, migration and invasion of HCC cells, both in vitro and in vivo. Moreover, NUPR1 silencing influenced the expression of RELB and IER3 genes. Unsurprisingly, RELB and IER3 knockdown also inhibited HCC cell viability, growth and migration. Using gene expression profiling of HCC cells following stable NUPR1 knockdown, we found that genes functionally involved in cell death and survival, cellular response to therapies, lipid metabolism, cell growth and proliferation, molecular transport and cellular movement were mostly suppressed. Network analysis of dynamic gene expression identified NF-κB and ERK as downregulated gene nodes, and several HCC-related oncogenes were also suppressed. We identified Runt-related transcription factor 2 (RUNX2) gene as a NUPR1-regulated gene and demonstrated that RUNX2 gene silencing inhibits HCC cell viability, growth, migration and increased cell sensitivity to sorafenib. We propose that the NUPR1/RELB/IER3/RUNX2 pathway has a pivotal role in hepatocarcinogenesis. The identification of the NUPR1/RELB/IER3/RUNX2 pathway as a potential therapeutic target may contribute to the development of new treatment strategies for HCC management.

Ito T, Ozaki S, Chanasong R, et al.
Activation of ERK/IER3/PP2A-B56γ-positive feedback loop in lung adenocarcinoma by allelic deletion of B56γ gene.
Oncol Rep. 2016; 35(5):2635-42 [PubMed] Related Publications
In order to investigate the involvement of the IER3/PP2A-B56γ/ERK-positive feedback loop, which leads to sustained phosphorylation/activation of ERK in carcinogenesis, we immunohistochemically examined the expression of IER3 and phosphorylated ERK in lung tumor tissues. IER3 was overexpressed in all cases of adenocarcinomas examined, but was not overexpressed in squamous cell carcinomas. Phosphorylated ERK (pERK) was also overexpressed in almost all adenocarcinomas. EGFR and RAS, whose gene product is located upstream of ERK, were sequenced. Activating mutation of EGFR, which is a possible cause of overexpression of IER3 and pERK, was found only in 5 adenocarcinomas (42%). No mutation of RAS was found. We further examined the sequences of all exons of B56γ gene (PPP2R5C) and IER3, but no mutation was found. Using a single nucleotide insertion in intron 1 of PPP2R5C, which was found in the process of sequencing, allelic deletion of PPP2R5C was examined. Eight cases were informative (67%), and the deletion was found in 4 of them (50%). Three cases having deletion of PPP2R5C did not have EGFR mutation. Finally, PPP2R5C deletion or EGFR mutation that could be responsible for IER3/pERK overexpression was found in at least 8 cases (67% or more). This is the first report of a high incidence of deletion of PPP2R5C in human carcinomas.

Jin H, Lee K, Kim YH, et al.
Scaffold protein FHL2 facilitates MDM2-mediated degradation of IER3 to regulate proliferation of cervical cancer cells.
Oncogene. 2016; 35(39):5106-18 [PubMed] Free Access to Full Article Related Publications
The expression of immediate early response 3 (IER3), a protein with a short half-life, is rapidly induced by various cellular stimuli. We recently reported that IER3 induces the apoptosis of cervical cancer cells and that its expression is downregulated in patients with cervical cancer. However, the molecular mechanism involved in the rapid degradation of IER3 remains unknown. Here, we demonstrate that MDM2 is an E3 ligase that interacts with IER3 and promotes its ubiquitination, followed by proteasomal degradation. Polyubiquitination of the conserved lysine 60 of IER3 is essential for its degradation. In addition, four and a half LIM domains protein 2 (FHL2) binds to both IER3 and MDM2, allowing for efficient MDM2-mediated IER3 degradation by facilitating an association between MDM2 and IER3. Moreover, IER3 induces cell cycle arrest in cervical cancer cells and its activity is further enhanced in cells in which FHL2 or MDM2 was silenced, thereby preventing IER3 degradation. The E6 and E7 oncoproteins of human papilloma virus 18 regulated IER3 expression. FHL2 expression was significantly higher in the squamous epithelium of cervical carcinoma tissues than in non-cancerous cervical tissues, whereas cervical carcinoma expression of IER3 was downregulated in this region. Thus, we determined the molecular mechanism responsible for IER3 degradation, involving a ternary complex of IER3, MDM2 and FHL2, which may contribute to cervical tumor growth. Furthermore, we demonstrated that FHL2 serves as a scaffold for E3 ligase and its substrate during the ubiquitination reaction, a function that has not been previously reported for this protein.

Liu Z, Wang XM, Jia TF, et al.
Expression of IER3 in primary hepatocarcinoma: correlation with clinicopathological parameters.
Asian Pac J Cancer Prev. 2015; 16(2):679-82 [PubMed] Related Publications
BACKGROUND: Studies indicate the immediate early response gene 3 (IER3) is involved in many biological processes. Recently, it was discovered that IER3 plays an important role in tumorigenesis and tumor progression. Thus it may be a valuable biomarker in tumor. This study was designed to investigate the expression status of IER3 in primary hepatocarcinoma (PHC) and correlation with clinicopathological parameters.
MATERIALS AND METHODS: Real-time PCR was performed to evaluate the expression levels of IER3 in 62 pathologically diagnosed human PHC specimens.
RESULTS: A statistically significant association was disclosed between the expression of IER3 and P53 mutant protein (short for P53), Ki-67, EGFR and the biggest diameter, differentiation grade of tumor.
CONCLUSIONS: This work is the first to shed light on the potential clinical usefulness of IER3, as an efficient tumor biomarker in PHC.

Jin H, Suh DS, Kim TH, et al.
IER3 is a crucial mediator of TAp73β-induced apoptosis in cervical cancer and confers etoposide sensitivity.
Sci Rep. 2015; 5:8367 [PubMed] Free Access to Full Article Related Publications
Infection with high-risk human papillomaviruses (HPVs) causes cervical cancer. E6 oncoprotein, an HPV gene product, inactivates the major gatekeeper p53. In contrast, its isoform, TAp73β, has become increasingly important, as it is resistant to E6. However, the intracellular signaling mechanisms that account for TAp73β tumor suppressor activity in cervix are poorly understood. Here, we identified that IER3 is a novel target gene of TAp73β. In particular, TAp73β exclusively transactivated IER3 in cervical cancer cells, whereas p53 and TAp63 failed to do. IER3 efficiently induced apoptosis, and its knockdown promoted survival of HeLa cells. In addition, TAp73β-induced cell death, but not p53-induced cell death, was inhibited upon IER3 silencing. Moreover, etoposide, a DNA-damaging chemotherapeutics, upregulated TAp73β and IER3 in a c-Abl tyrosine kinase-dependent manner, and the etoposide chemosensitivity of HeLa cells was largely determined by TAp73β-induced IER3. Of interest, cervical carcinomas from patients express no observable levels of two proteins. Thus, our findings suggest that IER3 is a putative tumor suppressor in the cervix, and the c-Ab1/p73β/IER3 axis is a novel and crucial signaling pathway that confers etoposide chemosensitivity. Therefore, TAp73β and IER3 induction would be a valuable checkpoint for successful therapeutic intervention of cervical carcinoma patients.

Kwon SM, Kim DS, Won NH, et al.
Genomic copy number alterations with transcriptional deregulation at 6p identify an aggressive HCC phenotype.
Carcinogenesis. 2013; 34(7):1543-50 [PubMed] Related Publications
Genomic analyses have revealed the enormous heterogeneity in essentially all cancer types. However, the identification of precise subtypes, which are biologically informative and clinically useful, remains a challenge. The application of integrative analysis of multilayered genomic profiles to define the chromosomal regions of genomic copy number alterations with concomitant transcriptional deregulation is posited to provide a promising strategy to identify driver targets. In this study, we performed an integrative analysis of the DNA copy numbers and gene expression profiles of hepatocellular carcinoma (HCC). By comparing DNA copy numbers between HCC subtypes based on gene expression pattern, we revealed the DNA copy number alteration with concordant gene expression changes at 6p21-p24 particularly in the HCC subtype of aggressive phenotype without expressing stemness genes. Among the genes at 6p21-p24, we identified IER3 as a potential driver. The clinical utility of IER3 copy numbers was demonstrated by validating its clinical correlation with independent cohorts. In addition, short hairpin RNA-mediated knock-down experiment revealed the functional relevance of IER3 in liver cancer progression. In conclusion, our results suggest that genomic copy number alterations with transcriptional deregulation at 6p21-p24 identify an aggressive HCC phenotype and a novel functional biomarker.

Strauss U, Bräuer AU
Current views on regulation and function of plasticity-related genes (PRGs/LPPRs) in the brain.
Biochim Biophys Acta. 2013; 1831(1):133-8 [PubMed] Related Publications
Plasticity-related genes (PRGs, Lipid phosphate phosphatase-related proteins LPPRs) are a defined as a subclass of the lipid phosphate phosphatase (LPP) superfamily, comprising so far five brain- and vertebrate-specific membrane-spanning proteins. LPPs interfere with lipid phosphate signaling and are thereby involved in mediating the extracellular concentration and signal transduction of lipid phosphate esters such as lysophosphatidate (LPA) and spingosine-1 phosphate (S1P). LPPs dephosphorylate their substrates through extracellular catalytic domains, thus making them ecto-phosphatases. PRGs/LPPRs are structurally similar to the other LPP family members in general. They are predominantly expressed in the CNS in a subtype specific pattern rather than having a wide tissue distribution. In contrast to LPPs, PRGs/LPPRs may act by modifying bioactive lipids and their signaling pathways, rather than possessing an ecto-phosphatase activity. However, the exact functional roles of PRGs/LPPRs have just begun to be explored. Here, we discuss new findings on the neuron-specific transcriptional regulation of PRG1/LPPR4 and new insights into protein-protein interaction and signaling pathway regulation. Further, we start to shed light on the subcellular localization and the resulting functional modulatory influence of PRG1/LPPR4 expression in excitatory synaptic transmission to the established neural effects such as promotion of filopodia formation, neurite extension, axonal sprouting and reorganization after lesion. This range of effects suggests an involvement in the pathogenesis and/or reparation attempts in disease. Therefore, we summarize available data on the association of PRGs/LPPRs with several neurological and other diseases in humans and experimental animals. Finally we highlight important open questions and emerging future directions of research. This article is part of a Special Issue entitled Advances in Lysophospholipid Research.

Wu MX, Ustyugova IV, Han L, Akilov OE
Immediate early response gene X-1, a potential prognostic biomarker in cancers.
Expert Opin Ther Targets. 2013; 17(5):593-606 [PubMed] Free Access to Full Article Related Publications
INTRODUCTION: The immediate early response gene X-1 (IEX-1) plays a pivotal role in the regulation of cell apoptosis, proliferation, differentiation and metabolism. Deregulation of IEX-1 expression has been confirmed in multiple cancers in humans, in association with either poor or better prognosis depending on the type and progression stages of the cancer.
AREAS COVERED: This review summarizes clinical studies of altered IEX-1 expression in ovarian, pancreatic, blood, breast and colorectal cancers, lymphoma and myeloma. The authors also outline the current understandings of the complex functions of IEX-1 gained from studies with animal models and tumor cell lines so as to help us comprehend the significance of the clinical findings.
EXPERT OPINION: IEX-1 holds great promise to be a valuable biomarker, either alone or in combination with other genes, for monitoring progression of some cancers. IEX-1 expression is highly sensitive to environmental cues and distinct between normal and cancer cells. However, use of IEX-1 as a biomarker remains a significant challenge because too little is understood about the mechanism underlying the diverse activities of IEX-1 and a standardized clinical assay for IEX-1 detection and validation of clinical results across different studies are still critically lacking.

Silva G, Cardoso BA, Belo H, Almeida AM
Vorinostat induces apoptosis and differentiation in myeloid malignancies: genetic and molecular mechanisms.
PLoS One. 2013; 8(1):e53766 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Aberrant epigenetic patterns are central in the pathogenesis of haematopoietic diseases such as myelodysplastic syndromes (MDS) and acute myeloid leukaemia (AML). Vorinostat is a HDACi which has produced responses in these disorders. The purpose of this study was to address the functional effects of vorinostat in leukemic cell lines and primary AML and MDS myeloid cells and to dissect the genetic and molecular mechanisms by which it exerts its action.
METHODOLOGY/PRINCIPAL FINDINGS: Functional assays showed vorinostat promoted cell cycle arrest, inhibited growth, and induced apoptosis and differentiation of K562, HL60 and THP-1 and of CD33(+) cells from AML and MDS patients. To explore the genetic mechanism for these effects, we quantified gene expression modulation by vorinostat in these cells. Vorinostat increased expression of genes down-regulated in MDS and/or AML (cFOS, COX2, IER3, p15, RAI3) and suppressed expression of genes over-expressed in these malignancies (AXL, c-MYC, Cyclin D1) and modulated cell cycle and apoptosis genes in a manner which would favor cell cycle arrest, differentiation, and apoptosis of neoplastic cells, consistent with the functional assays. Reporter assays showed transcriptional effect of vorinostat on some of these genes was mediated by proximal promoter elements in GC-rich regions. Vorinostat-modulated expression of some genes was potentiated by mithramycin A, a compound that interferes with SP1 binding to GC-rich DNA sequences, and siRNA-mediated SP1 reduction. ChIP assays revealed vorinostat inhibited DNA binding of SP1 to the proximal promoter regions of these genes. These results suggest vorinostat transcriptional action in some genes is regulated by proximal promoter GC-rich DNA sequences and by SP1.
CONCLUSION: This study sheds light on the effects of vorinostat in AML and MDS and supports the implementation of clinical trials to explore the use of vorinostat in the treatment of these diseases.

Communal L, Vilasco M, Hugon-Rodin J, et al.
Ulipristal acetate does not impact human normal breast tissue.
Hum Reprod. 2012; 27(9):2785-98 [PubMed] Related Publications
BACKGROUND: Antiprogestins are of growing interest for the development of new treatments in the gynecological field. Ulipristal acetate (UPA) is a progesterone receptor (PR) modulator considered for long-term administration in contraception and is currently being registered for the treatment of uterine fibroids. In light of the influences of hormonal dysfunction in breast pathologies, the secondary consequences of chronic UPA therapy need to be established. The aim of this study was to determine UPA actions mediated by PR and glucocorticoid receptor (GR) in normal and transformed breast.
METHODS: UPA, progesterone (P) and dexamethasone (DEX) effects were observed on PR and GR responsive genes and on proliferation and apoptosis of normal human breast epithelial (HBE) and breast cancer cells. Human normal breast tissue samples were xenografted in athymic mice and treated with estradiol (E2), or E2 + P, or E2 + P + UPA.
RESULTS: Analysis of PR and GR reporter gene transactivation and their respective endogenous target genes indicated that UPA exerted anti-progestational and anti-glucocorticoid activity in both types of cells with a more pronounced effect in cancer cells. When combined with P or DEX, UPA limits the proliferation of HBE cells but increases growth in breast cancer cell lines. UPA administration had no impact on the mitotic index on xenografted human breast tissue exposed to gonadal hormones at similar concentrations to those present in normal women.
CONCLUSIONS: Although further clinical trials are required to confirm that the results from our experimental models can be extrapolated to women treated with UPA, they suggest that such treatment would not be deleterious to normal breast tissue at least for a cycle (28 days) of continuous administration.

Hamidi T, Algül H, Cano CE, et al.
Nuclear protein 1 promotes pancreatic cancer development and protects cells from stress by inhibiting apoptosis.
J Clin Invest. 2012; 122(6):2092-103 [PubMed] Free Access to Full Article Related Publications
Pancreatic ductal adenocarcinoma (PDAC) has the lowest survival rate of all cancers and shows remarkable resistance to cell stress. Nuclear protein 1 (Nupr1), which mediates stress response in the pancreas, is frequently upregulated in pancreatic cancer. Here, we report that Nupr1 plays an essential role in pancreatic tumorigenesis. In a mouse model of pancreatic cancer with constitutively expressed oncogenic Kras(G12D), we found that loss of Nupr1 protected from the development of pancreatic intraepithelial neoplasias (PanINs). Further, in cultured pancreatic cells, nutrient deprivation activated Nupr1 expression, which we found to be required for cell survival. We found that Nupr1 protected cells from stress-induced death by inhibiting apoptosis through a pathway dependent on transcription factor RelB and immediate early response 3 (IER3). NUPR1, RELB, and IER3 proteins were coexpressed in mouse PanINs from Kras(G12D)-expressing pancreas. Moreover, pancreas-specific deletion of Relb in a Kras(G12D) background resulted in delayed in PanIN development associated with a lack of IER3 expression. Thus, efficient PanIN formation was dependent on the expression of Nupr1 and Relb, with likely involvement of IER3. Finally, in patients with PDAC, expression of NUPR1, RELB, and IER3 was significantly correlated with a poor prognosis. Cumulatively, these results reveal a NUPR1/RELB/IER3 stress-related pathway that is required for oncogenic Kras(G12D)-dependent transformation of the pancreas.

Akilov OE, Wu MX, Ustyugova IV, et al.
Resistance of Sézary cells to TNF-α-induced apoptosis is mediated in part by a loss of TNFR1 and a high level of the IER3 expression.
Exp Dermatol. 2012; 21(4):287-92 [PubMed] Free Access to Full Article Related Publications
Failure to execute an apoptotic programme is one of the critical steps and a common mechanism promoting tumorogenesis. Immediate early responsive gene 3 (IER3) has been shown to be upregulated in several cancers. IER3 is a stress-induced gene, which upregulation leads to reduction in production of reactive oxygen species (ROS) protecting malignant cells from apoptosis. We observed that malignant lymphocytes from patients with Sézary syndrome (SzS) were resistant to pro-apoptotic dose of tumour necrosis factor-α (TNF-α). The aim of this study was to investigate the role of IER3 in the mechanism of such resistance. CD4+ CD26- lymphocytes from the peripheral blood of patients with SzS and healthy controls were negatively selected using CD4 and CD26 magnetic beads and analysed for expression of TNFR1, TNFR2, IER3 expression, and ROS production in response to TNF-α at an apoptotic dose. Sézary cells with a higher level of IER3 expression retained their viability to TNF-α. IER3 upregulation correlated with a decrease level of intracellular ROS and low TNFR1 expression on malignant cells. Targeting IER3 could be of interest for the development of future therapeutic strategies for patients with SzS.

Lee YH, Kim JH, Zhou H, et al.
Salivary transcriptomic biomarkers for detection of ovarian cancer: for serous papillary adenocarcinoma.
J Mol Med (Berl). 2012; 90(4):427-34 [PubMed] Related Publications
Ovarian cancer is the most lethal gynecological cancer due to lack of clear symptom and reliable screening biomarker in the early stage. The capability to detect the initiation of malignancy with a sensitive and effective approach is one of the most desirable goals for ovarian cancer therapy. In this study, we spearheaded noninvasive detection of ovarian cancer by salivary transcriptomic biomarkers, and evaluated the clinical utilities of discovered biomarkers using a clinical case-control study. To find salivary mRNA biomarkers, salivary transcriptomes in 11 ovarian cancer patients and 11 matched controls were profiled by Affymetrix HG-U133-Plus-2.0 array. The biomarker candidates selected from the microarray results were then subjected to clinical validation by RT-qPCR using an independent sample cohort including 21 ovarian cancer patients and 35 healthy controls. Seven downregulated mRNA biomarkers were validated. The logistic regression model revealed the combination of five validated biomarkers (AGPAT1, B2M, BASP2, IER3, and IL1B) can significantly discriminate ovarian cancer patients (n = 21) from the healthy controls (n = 35), yielding a receiver operating characteristic plot, area under the curve value of 0.909 with 85.7% sensitivity and 91.4% specificity. In summary, we have demonstrated that the RNA signatures in saliva could serve as biomarkers for detection of ovarian cancer with high sensitivity and specificity. This emerging approach with high-throughput, noninvasive, and effective advantages provides a feasible means for detection of systemic cancer, and opens a new avenue for early disease detection.

Han L, Geng L, Liu X, et al.
Clinical significance of IEX-1 expression in ovarian carcinoma.
Ultrastruct Pathol. 2011; 35(6):260-6 [PubMed] Related Publications
BACKGROUND: The stress-inducible immediate early response gene X-1 (IEX-1) regulates cell proliferation and apoptosis in a cell type and stimulus-dependent manner. The aim of this study was to investigate IEX-1 expression and its role in apoptosis of ovarian epithelial tumors for potential use in clinical diagnosis and therapy.
METHODS: IEX-1 expression was examined in paraffin-embedded specimens from 77 patients with epithelial ovarian tumors using immunohistochemistry. Correlation between IEX-1 expression and other clinicopathological parameters was evaluated. Apoptosis of tumor cells was detected by terminal deoxynucleotide transferase-mediated dUTP nick end labeling (TUNEL).
RESULTS: IEX-1 expression was significantly lower in ovarian cancers compared to cystadenomas and borderline tumors (p < .05). The expression was significantly associated with FIGO stage and histological grade (p < .05), but not with age, histological type, or residual tumor (p > .05). A positive correlation was also observed between IEX-1 expression and apoptotic index (p < .01) or survival (p=.005).
CONCLUSION: With the development of epithelial ovarian tumors from benign to malignant, IEX-1 expression is decreased, concomitant with a decreased rate of cell apoptosis. Thus, IEX-1 is pro-apoptotic in the development of epithelial ovarian cancer. The pro-apoptotic activity may take part in restraining tumor growth at the early stage of ovarian epithelial cancer, whereas its decreased expression probably contributes to the abnormal survival advantage for malignant cancer. Altered IEX-1 expression can potentially be a new predictor of the malignant transformation and a prognostic indicator for cancer therapy.

De Luisi A, Ferrucci A, Coluccia AM, et al.
Lenalidomide restrains motility and overangiogenic potential of bone marrow endothelial cells in patients with active multiple myeloma.
Clin Cancer Res. 2011; 17(7):1935-46 [PubMed] Related Publications
PURPOSE: To determine the in vivo and in vitro antiangiogenic power of lenalidomide, a "lead compound" of IMiD immunomodulatory drugs in bone marrow (BM) endothelial cells (EC) of patients with multiple myeloma (MM) in active phase (MMEC).
EXPERIMENTAL DESIGN: The antiangiogenic effect in vivo was studied using the chorioallantoic membrane (CAM) assay. Functional studies in vitro (angiogenesis, "wound" healing and chemotaxis, cell viability, adhesion, and apoptosis) were conducted in both primary MMECs and ECs of patients with monoclonal gammopathies (MGUS) of undetermined significance (MGEC) or healthy human umbilical vein endothelial cells (HUVEC). Real-time reverse transcriptase PCR, Western blotting, and differential proteomic analysis were used to correlate morphologic and biological EC features with the lenalidomide effects at the gene and protein levels.
RESULTS: Lenalidomide exerted a relevant antiangiogenic effect in vivo at 1.75 μmol/L, a dose reached in interstitial fluids of patients treated with 25 mg/d. In vitro, lenalidomide inhibited angiogenesis and migration of MMECs, but not of MGECs or control HUVECs, and had no effect on MMEC viability, apoptosis, or fibronectin- and vitronectin-mediated adhesion. Lenalidomide-treated MMECs showed changes in VEGF/VEGFR2 signaling pathway and several proteins controlling EC motility, cytoskeleton remodeling, and energy metabolism pathways.
CONCLUSIONS: This study provides information on the molecular mechanisms associated with the antimigratory and antiangiogenic effects of lenalidomide in primary MMECs, thus giving new avenues for effective endothelium-targeted therapies in MM.

Jung M, Dimtchev A, Velena A, Dritschilo A
Combining radiation therapy with interstitial radiation-inducible TNF-α expression for locoregional cancer treatment.
Cancer Gene Ther. 2011; 18(3):189-95 [PubMed] Related Publications
Brachytherapy (BRT) is used in the treatment of human cancers, including the cervix, breast, prostate and head and neck cancers. The primary advantage of BRT lies in the spatial conformation of the radiation deposition. Previously, we have shown that similar techniques (using hollow metallic cylinders) may be used to deliver gene-therapy vectors capable of expressing the radiation-sensitizing cytokine, tumor necrosis factor (TNF)-α, within a restricted volume of tissue. Herein, we report radiation sensitization of cancer cells using a TNF-α expressing vector driven by the radiation-inducible immediate-early gene-1 (IEX-1) promoter (pIEX-TNF-α). TNF-α, determined by ELISA assays using culture medium, increased between 5 and 10 fold, 48 h following exposure to radiation, and radiation sensitization was comparable with that observed in cells in which TNF-α was constitutively expressed under cytomegalo viral (CMV) promoter using the plasmid vector (pCMV-TNF-α). This efficiency of induced TNF-α radiation sensitization was also observed in cervix (SW756) and prostate tumor (PC-3) xenograft models. IEX-1-driven TNF-α expression following external radiation exposure resulted in enhanced regression of tumor xenografts as compared with radiation alone. A feasibility of using radioactive Pd-103 seeds with GeneSeeds was further examined using PC-3 xenograft models. The data showed substantial tumor growth suppression following co-implantation with a metal seed containing Pd-103. Taken together, these results show the enhanced effect on tumor regression by treatment with radiation-inducible TNF-α expression in combination with radiation and support for the IEX-1 promoter as a useful regulator for temporal activation of radiation-sensitizing gene expression.

Rasmussen LM, Frederiksen KS, Din N, et al.
Prolactin and oestrogen synergistically regulate gene expression and proliferation of breast cancer cells.
Endocr Relat Cancer. 2010; 17(3):809-22 [PubMed] Related Publications
The pituitary hormone prolactin (PRL) plays an important role in mammary gland development. It was also suggested to contribute to breast cancer progression. In vivo data strongly supported a crucial role of PRL in promoting tumour growth; however, PRL demonstrated only a weak, if any, pro-proliferative effect on cancer cells in vitro. Several recent studies indicated that PRL action in vivo may be influenced by the hormonal milieu, e.g. other growth factors such as 17beta-oestradiol (E(2)). Here, we explored the potential interplay between PRL and E(2) in regulation of gene expression and cell growth. PRL alone induced either a weak or no proliferative response of T47D and BT-483 cells respectively, while it drastically enhanced cell proliferation in E(2)-stimulated cultures. Affymetrix microarray analysis revealed 12 genes to be regulated by E(2), while 57 genes were regulated by PRL in T47D cells. Most of the PRL-regulated genes (42/57) were not previously described as PRL target genes, e.g. WT1 and IER3. One hundred and five genes were found to be regulated upon PRL/E(2) co-treatment: highest up-regulation was found for EGR3, RUNX2, EGR1, MAFF, GLIPR1, IER3, SOCS3, WT1 and AREG. PRL and E(2) synergised to regulate EGR3, while multiple genes were regulated additively. These data show a novel interplay between PRL and E(2) to modulate gene regulation in breast cancer cells.

Davids MS, Steensma DP
The molecular pathogenesis of myelodysplastic syndromes.
Cancer Biol Ther. 2010; 10(4):309-19 [PubMed] Related Publications
The myelodysplastic syndromes (MDS) are frequently associated with clonally restricted cytogenetic abnormalities, but until recently, the molecular pathobiology underlying this diverse group of neoplastic bone marrow disorders has been largely obscure. During the last 10 years, many investigative groups have applied the formidable power of new molecular biology techniques to hunt for recurrent genetic alterations in MDS primary cells. Several genetic abnormalities, including mutations in RUNX1 (AML1), TET2, ASXL1 and TP53, have been discovered in a substantial fraction of MDS cases; genes rearranged or mutated less commonly in MDS include IER3, ATRX, RAS and FLT3. Furthermore, haploinsufficiency and expression changes in RPS14, miR-145 and miR-146a, CDC25c, PP2A and SPARC in the absence of point mutations have also been implicated in MDS pathobiology. A major challenge will be to determine which of these mutations are causative "drivers" either in the development or progression of MDS, which might be therapeutically important because they predict response to treatment, and which are merely "passengers" along for the ride that alter phenotype but have no effect on the natural history of the disease. While the altered cellular biology of MDS is also increasingly well-understood, many mysteries remain. Abnormalities in iron regulation, microenvironment interactions, regulation of apoptosis and oxidative damage/DNA repair may all play an important pathobiological role. By gaining a deeper understanding of the mechanisms of these complex and heterogeneous diseases, we will hopefully improve our ability to treat our patients with MDS beyond the therapies with limited effectiveness that are available at present.

Bruheim S, Xi Y, Ju J, Fodstad O
Gene expression profiles classify human osteosarcoma xenografts according to sensitivity to doxorubicin, cisplatin, and ifosfamide.
Clin Cancer Res. 2009; 15(23):7161-9 [PubMed] Related Publications
PURPOSE: In osteosarcoma, aggressive preoperative and postoperative multidrug chemotherapy given to all patients has improved patient survival rate to the present level of approximately 60%. However, no tumor marker is available that reliably can identify those patients who will or will not respond to chemotherapy.
EXPERIMENTAL DESIGN: In an attempt to find leads to such markers, we have obtained microarray gene expression profiles from a panel of 10 different human osteosarcoma xenografts and related the results to their sensitivity to ifosfamide, doxorubicin, and cisplatin.
RESULTS: The expression data identified genes with highly significant differential expression between poor and good responder xenografts to the three different drugs: 85 genes for doxorubicin, 74 genes for cisplatin, and 118 genes for ifosfamide. Technical validation with quantitative reverse transcription-PCR showed good correlation with the microarray expression data. Gene Ontology-guided analysis suggested that properties of the poorly responsive xenografts were resistance to undergo programmed cell death and, particularly for ifosfamide, a drive toward dedifferentiation and increased tumor aggressiveness. Leads toward metabolic alterations and involvement of mitochondrial pathways for apoptosis and stress response were more prominent for doxorubicin and cisplatin. Finally, small interfering RNA-mediated gene silencing of IER3 and S100A2 sensitized the human osteosarcoma cell line OHS to treatment with 4-hydroperoxyifosfamide.
CONCLUSIONS: The expression profiles contained several novel biomarker candidates that may help predict the responsiveness of osteosarcoma to doxorubicin, cisplatin, and ifosfamide. The potential of selected candidates will be further validated on clinical specimens from osteosarcoma patients.

Schetter AJ, Nguyen GH, Bowman ED, et al.
Association of inflammation-related and microRNA gene expression with cancer-specific mortality of colon adenocarcinoma.
Clin Cancer Res. 2009; 15(18):5878-87 [PubMed] Free Access to Full Article Related Publications
PURPOSE: Inflammatory genes and microRNAs have roles in colon carcinogenesis; therefore, they may provide useful biomarkers for colon cancer. This study examines the potential clinical utility of an inflammatory gene expression signature as a prognostic biomarker for colon cancer in addition to previously examined miR-21 expression.
EXPERIMENTAL DESIGN: Quantitative reverse transcriptase-PCR. was used to measure the expression of 23 inflammatory genes in colon adenocarcinomas and adjacent noncancerous tissues from 196 patients. These data were used to develop models for cancer-specific mortality on a training cohort (n = 57), and this model was tested in both a test (n = 56) and a validation (n = 83) cohort. Expression data for miR-21 were available for these patients and were compared and combined with inflammatory gene expression.
RESULTS: PRG1, IL-10, CD68, IL-23a, and IL-12a expression in noncancerous tissue, and PRG1, ANXA1, IL-23a, IL-17a, FOXP3, and HLA-DRA expression in tumor tissues were associated with poor prognosis based on Cox regression (/Z-score/ >1.5) and were used to generate the inflammatory risk score (IRS). IRS was associated with cancer-specific mortality in the training, test (P = 0.01), and validation (P = 0.02) cohorts. This association was strong for stage II cases (P = 0.002). Expression of miR-21 was associated with IL-6, IL-8, IL-10, IL-12a, and NOS2a, providing evidence that the function of this microRNA and these inflammatory genes are linked. Both IRS and miR-21 expression were independently associated with cancer-specific mortality, including stage II patients alone.
CONCLUSION: IRS and miR-21 expression are independent predictors of colon cancer prognosis and may provide a clinically useful tool to identify high-risk patients.

Ria R, Todoerti K, Berardi S, et al.
Gene expression profiling of bone marrow endothelial cells in patients with multiple myeloma.
Clin Cancer Res. 2009; 15(17):5369-78 [PubMed] Related Publications
PURPOSE: To determine a "gene/molecular fingerprint" of multiple myeloma endothelial cells and identify vascular mechanisms governing the malignant progression from quiescent monoclonal gammopathy of undetermined significance.
EXPERIMENTAL DESIGN: Comparative gene expression profiling of multiple myeloma endothelial cells and monoclonal gammopathy of undetermined significance endothelial cells with the Affymetrix U133A Arrays was carried out in patients at diagnosis; expression and function of selective vascular markers was validated by real-time reverse transcriptase-PCR, Western blot, and small interfering RNA analyses.
RESULTS: Twenty-two genes were found differentially expressed (14 down-regulated and eight up-regulated) at relatively high stringency in multiple myeloma endothelial cells compared with monoclonal gammopathy of undetermined significance endothelial cells. Functional annotation revealed a role of these genes in the regulation of extracellular matrix formation and bone remodeling, cell adhesion, chemotaxis, angiogenesis, resistance to apoptosis, and cell-cycle regulation. Validation was focused on six genes (DIRAS3, SERPINF1, SRPX, BNIP3, IER3, and SEPW1) not previously found to be functionally correlated to the overangiogenic phenotype of multiple myeloma endothelial cells in active disease. The small interfering RNA knockdown of BNIP3, IER3, and SEPW1 genes affected critical multiple myeloma endothelial cell functions correlated with the overangiogenic phenotype.
CONCLUSIONS: The distinct endothelial cell gene expression profiles and vascular phenotypes detected in this study may influence remodeling of the bone marrow microenvironment in patients with active multiple myeloma. A better understanding of the linkage between plasma cells and endothelial cells in multiple myeloma could contribute to the molecular classification of the disease and thus pinpoint selective gene targets for more effective antiangiogenic treatments.

Laurenzana A, Petruccelli LA, Pettersson F, et al.
Inhibition of DNA methyltransferase activates tumor necrosis factor alpha-induced monocytic differentiation in acute myeloid leukemia cells.
Cancer Res. 2009; 69(1):55-64 [PubMed] Related Publications
Transcriptional silencing via promoter methylation of genes important for cell growth and differentiation plays a key role in myeloid leukemogenesis. We find that clinically achievable levels of 5-aza-2'-deoxycytidine (5-AZA-dC), a potent inhibitor of DNA methylation, can modify chromatin and restore the ability of tumor necrosis factor alpha (TNFalpha) to induce monocytic differentiation of the acute myeloid leukemia cells NB4 and U937. Although 5-AZA-dC cannot fully induce differentiation, we show that 5-AZA-dC acts directly on TNFalpha-responsive promoters to facilitate TNFalpha-induced transcriptional pathways leading to differentiation. 5-AZA-dC regulates the expression of Dif-2, a TNFalpha target gene, by deacetylating chromatin domains in a methylation-dependent manner. Chromatin immunoprecipitation analyses of the Dif-2 promoter show histone hyperacetylation and a recruitment of the nuclear factor-kappaB transcription factor in response to 5-AZA-dC. Furthermore, 5-AZA-dC plus TNFalpha enhances the level of phosphorylated RNA Pol II at the Dif-2 promoter via synergistic recruitment of TFIIH. We conclude that nonspecific changes in chromatin can allow a specific transcriptional inducer to overcome blocks in leukemic cell differentiation. Our results support the concept of low doses of 5-AZA-dC acting in combination with other agents to target epigenetic changes that drive malignant growth in leukemic cells. [Cancer Res 2009;69(1):55-64].

Daigeler A, Klein-Hitpass L, Chromik MA, et al.
Heterogeneous in vitro effects of doxorubicin on gene expression in primary human liposarcoma cultures.
BMC Cancer. 2008; 8:313 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Doxorubicin is considered one of the most potent established chemotherapeutics in the treatment of liposarcoma; however, the response rates usually below 30%, are still disappointing. This study was performed to identify gene expression changes in liposarcoma after doxorubicin treatment.
METHODS: Cells of 19 primary human liposarcoma were harvested intraoperatively and brought into cell culture. Cells were incubated with doxorubicin for 24 h, RNA was isolated and differential gene expression was analysed by the microarray technique.
RESULTS: A variety of genes involved in apoptosis were up and down regulated in different samples revealing a heterogeneous expression pattern of the 19 primary tumor cell cultures in response to doxorubicin treatment. However, more than 50% of the samples showed up-regulation of pro-apoptotic genes such as TRAIL Receptor2, CDKN1A, GADD45A, FAS, CD40, PAWR, NFKBIA, IER3, PSEN1, RIPK2, and CD44. The anti-apoptotic genes TNFAIP3, PEA15, Bcl2A1, NGFB, and BIRC3 were also up-regulated. The pro-apoptotic CD14, TIA1, and ITGB2 were down-regulated in more than 50% of the tumor cultures after treatment with doxorubicin, as was the antiapoptotic YWHAH.
CONCLUSION: Despite a correlation of the number of differentially regulated genes to the tumor grading and to a lesser extent histological subtype, the expression patterns varied strongly; however, especially among high grade tumors the responses of selected apoptosis genes were similar. The predescribed low clinical response rates of low grade liposarcoma to doxorubicin correspond to our results with only little changes on gene expression level and also divergent findings concerning the up- and down-regulation of single genes in the different sarcoma samples.

Segditsas S, Sieber O, Deheragoda M, et al.
Putative direct and indirect Wnt targets identified through consistent gene expression changes in APC-mutant intestinal adenomas from humans and mice.
Hum Mol Genet. 2008; 17(24):3864-75 [PubMed] Free Access to Full Article Related Publications
In order to identify new genes with differential expression in early intestinal tumours, we performed mRNA (messenger ribonucleic acid) expression profiling of 16 human and 63 mouse adenomas. All individuals had germline APC mutations to ensure that tumorigenesis was driven by 'second hits' at APC. Using stringent filtering to identify changes consistent between humans and mice, we identified 60 genes up-regulated and 151 down-regulated in tumours. For 22 selected genes--including known Wnt targets--expression differences were confirmed by qRT-PCR (quantitative reverse transcription polymerase chain reaction). Most, but not all, differences were also present in colorectal carcinomas. In situ analysis showed a complex picture. Expression of up-regulated genes in adenomas was usually uniform/diffuse (e.g. ITGA6) or prominent in the tumour core (e.g. LGR5); in normal tissue, these genes were expressed at crypt bases or the transit amplifying zone. Down-regulated genes were often undetectable in adenomas, but in normal tissue were expressed in mesenchyme (e.g. GREM1/2) or differentiated cells towards crypt tops (e.g. SGK1). In silico analysis of TCF4-binding motifs showed that some of our genes were probably direct Wnt targets. Previous studies, mostly focused on human tumours, showed partial overlap with our 'expression signature', but 37 genes were unique to our study, including TACSTD2, SEMA3F, HOXA9 and IER3 (up-regulated), and TAGLN, GREM1, GREM2, MAB21L2 and RARRES2 (down-regulated). Combined analysis of our and published human data identified additional genes differentially expressed in adenomas, including decreased BMPs (bone morphogenetic proteins) and increased BUB1/BUB1B. Several of the newly identified, differentially expressed genes represent potential diagnostic or therapeutic targets for intestinal tumours.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. IER3, Cancer Genetics Web: http://www.cancer-genetics.org/IER3.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999