GPX2

Gene Summary

Gene:GPX2; glutathione peroxidase 2
Aliases: GPRP, GPx-2, GI-GPx, GPRP-2, GPx-GI, GSHPx-2, GSHPX-GI
Location:14q23.3
Summary:The protein encoded by this gene belongs to the glutathione peroxidase family, members of which catalyze the reduction of organic hydroperoxides and hydrogen peroxide (H2O2) by glutathione, and thereby protect cells against oxidative damage. Several isozymes of this gene family exist in vertebrates, which vary in cellular location and substrate specificity. This isozyme is predominantly expressed in the gastrointestinal tract (also in liver in human), is localized in the cytoplasm, and whose preferred substrate is hydrogen peroxide. Overexpression of this gene is associated with increased differentiation and proliferation in colorectal cancer. This isozyme is also a selenoprotein, containing the rare amino acid selenocysteine (Sec) at its active site. Sec is encoded by the UGA codon, which normally signals translation termination. The 3' UTRs of selenoprotein mRNAs contain a conserved stem-loop structure, designated the Sec insertion sequence (SECIS) element, that is necessary for the recognition of UGA as a Sec codon, rather than as a stop signal. Alternatively spliced transcript variants have been found for this gene. [provided by RefSeq, Jul 2016]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:glutathione peroxidase 2
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (10)
Pathways:What pathways are this gene/protein implicaed in?
Show (2)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Biomarkers, Tumor
  • Cancer Gene Expression Regulation
  • Wnt3A Protein
  • Glutathione Peroxidase
  • Single Nucleotide Polymorphism
  • RTPCR
  • Thioredoxin-Disulfide Reductase
  • Inflammation
  • Selenoproteins
  • Up-Regulation
  • Surveys and Questionnaires
  • Proportional Hazards Models
  • Oxidative Stress
  • Smoking
  • Stomach Cancer
  • Urothelium
  • Down-Regulation
  • Breast Cancer
  • Esophageal Cancer
  • Neoplastic Cell Transformation
  • Thioredoxin Reductase 1
  • Selenium
  • Chromosome 14
  • Gene Expression Profiling
  • alpha-Fetoproteins
  • Prostate Cancer
  • Lung Cancer
  • Neoplasm Proteins
  • Case-Control Studies
  • Young Adult
  • Colorectal Cancer
  • Transcription Factors
  • Wilms Tumour
  • Oligonucleotide Array Sequence Analysis
  • Genotype
  • Immunohistochemistry
  • DNA Methylation
  • Messenger RNA
  • p53 Protein
  • Risk Factors
  • p38 Mitogen-Activated Protein Kinases
  • Squamous Cell Carcinoma
Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: GPX2 (cancer-related)

Hao Y, Li D, Xu Y, et al.
Investigation of lipid metabolism dysregulation and the effects on immune microenvironments in pan-cancer using multiple omics data.
BMC Bioinformatics. 2019; 20(Suppl 7):195 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lipid metabolism reprogramming is a hallmark for tumor which contributes to tumorigenesis and progression, but the commonality and difference of lipid metabolism among pan-cancer is not fully investigated. Increasing evidences suggest that the alterations in tumor metabolism, including metabolite abundance and accumulation of metabolic products, lead to local immunosuppression in the tumor microenvironment. An integrated analysis of lipid metabolism in cancers from different tissues using multiple omics data may provide novel insight into the understanding of tumorigenesis and progression.
RESULTS: Through systematic analysis of the multiple omics data from TCGA, we found that the most-widely altered lipid metabolism pathways in pan-cancer are fatty acid metabolism, arachidonic acid metabolism, cholesterol metabolism and PPAR signaling. Gene expression profiles of fatty acid metabolism show commonalities across pan-cancer, while the alteration in cholesterol metabolism and arachidonic acid metabolism differ with tissue origin, suggesting tissue specific lipid metabolism features in different tumor types. An integrated analysis of gene expression, DNA methylation and mutations revealed factors that regulate gene expression, including the differentially methylated sites and mutations of the lipid genes, as well as mutation and differential expression of the up-stream transcription factors for the lipid metabolism pathways. Correlation analysis of the proportion of immune cells in the tumor microenvironment and the expression of lipid metabolism genes revealed immune-related differentially expressed lipid metabolic genes, indicating the potential crosstalk between lipid metabolism and immune response. Genes related to lipid metabolism and immune response that are associated with poor prognosis were discovered including HMGCS2, GPX2 and CD36, which may provide clues for tumor biomarkers or therapeutic targets.
CONCLUSIONS: Our study provides an integrated analysis of lipid metabolism in pan-cancer, highlights the perturbation of key metabolism processes in tumorigenesis and clarificates the regulation mechanism of abnormal lipid metabolism and effects of lipid metabolism on tumor immune microenvironment. This study also provides new clues for biomarkers or therapeutic targets of lipid metabolism in tumors.

Hughes DJ, Kunická T, Schomburg L, et al.
Expression of Selenoprotein Genes and Association with Selenium Status in Colorectal Adenoma and Colorectal Cancer.
Nutrients. 2018; 10(11) [PubMed] Free Access to Full Article Related Publications
Dietary selenium (Se) intake is essential for synthesizing selenoproteins that are important in countering oxidative and inflammatory processes linked to colorectal carcinogenesis. However, there is limited knowledge on the selenoprotein expression in colorectal adenoma (CRA) and colorectal cancer (CRC) patients, or the interaction with Se status levels. We studied the expression of seventeen Se pathway genes (including fifteen of the twenty-five human selenoproteins) in RNA extracted from disease-normal colorectal tissue pairs, in the discovery phase of sixty-two CRA/CRC patients from Ireland and a validation cohort of a hundred and five CRC patients from the Czech Republic. Differences in transcript levels between the disease and paired control mucosa were assessed by the Mann-Whitney U-test.

Zhang H, Zhao W, Gu D, et al.
Association of Antioxidative Enzymes Polymorphisms with Efficacy of Platin and Fluorouracil-Based Adjuvant Therapy in Gastric Cancer.
Cell Physiol Biochem. 2018; 48(6):2247-2257 [PubMed] Related Publications
BACKGROUND/AIMS: Imbalance of oxidative/antioxidative enzymes in cells is associated with carcinogenesis and cancer cell chemoresistance. The aim of this study was to examine the clinical significance of potentially functional single nucleotides polymorphisms (SNPs) in antioxidative enzymes, GPxs and CAT, in stages II and III gastric cancer patients.
METHODS: A total of 591 gastric cancer patients who had radical gastrectomy were recruited. 207 patients received platinum and fluorouracil-based (PF-based) adjuvant chemotherapy and 384 patients were untreated. GPx1 rs1050450, GPx2 rs4902346, GPx3 rs736775, rs3828599 and CAT rs769218 were genotyped in the DNA samples extracted from paraffin-embedded tumor tissue.
RESULTS: CAT rs769218 was significantly correlated with the overall survival (OS) in the dominant model (P = 0.014). Multivariate analysis revealed that CAT rs769218 GA/AA (HR, 0.715; 95%CI, 0.562-0.910, P = 0.006) was an independent prognostic marker indicating improved survival. After adjustments, GPx3 rs736775 TC/CC was significantly associated with improved OS (HR, 0.621; 95%CI, 0.399-0.965; P=0.034) in patients treated with PF-based adjuvant chemotherapy, and CAT rs769218 GA/AA was significantly associated with improved OS (HR, 0.646; 95% CI, 0.482-0.864; P = 0.003) in the untreated patients. PF-based chemotherapy significantly decreased risk of death for patients carrying GPx3 rs736775 TC/CC and age ≤ 60 years or with diffused type adenocarcinoma compared to surgery alone.
CONCLUSION: our findings suggested CAT rs769218 and GPx3 rs736775 may be considered as prognostic markers in gastric cancer. Patient stratification by GPx3 rs736775 and conventional pathological parameters may provide additional predictive information in treatment decision-making.

Xu L, Gong C, Li G, et al.
Ebselen suppresses inflammation induced by Helicobacter pylori lipopolysaccharide via the p38 mitogen-activated protein kinase signaling pathway.
Mol Med Rep. 2018; 17(5):6847-6851 [PubMed] Related Publications
Ebselen is a seleno-organic compound that has been demonstrated to have antioxidant and anti-inflammatory properties. A previous study determined that ebselen inhibits airway inflammation induced by inhalational lipopolysaccharide (LPS), however, the underlying molecular mechanism remains to be elucidated. The present study investigated the effect of ebselen on the glutathione peroxidase (GPX)‑reactive oxygen species (ROS) pathway and interleukin‑8 (IL‑8) expression induced by Helicobacter pylori LPS in gastric cancer (GC) cells. Cells were treated with 200 ng/ml H. pylori‑LPS in the presence or absence of ebselen for various durations and concentrations (µmol/l). The expression of toll‑like receptor 4 (TLR4), GPX2, GPX4, p38 mitogen‑activated protein kinase (p38 MAPK), phosphorylated‑p38 MAPK, ROS production and IL‑8 expression were detected with western blotting or ELISA. The present study revealed that TLR4 expression was upregulated; however, GPX2 and GPX4 expression was reduced following treatment with H. pylori LPS, which led to increased ROS production, subsequently altering the IL‑8 expression level in GC cells. Additionally, it was determined that ebselen prevented the reduction in GPX2/4 levels induced by H. pylori LPS, however, TLR4 expression was not affected. Ebselen may also block the expression of IL‑8 by inhibiting phosphorylation of p38 MAPK. These data suggest ebselen may inhibit ROS production triggered by H. pylori LPS treatment via GPX2/4 instead of TLR4 signaling and reduce phosphorylation of p38 MAPK, resulting in altered production of IL‑8. Ebselen may, therefore, be a potential therapeutic agent to mediate H. pylori LPS-induced cell damage.

Huang H, Zhang W, Pan Y, et al.
YAP Suppresses Lung Squamous Cell Carcinoma Progression via Deregulation of the DNp63-GPX2 Axis and ROS Accumulation.
Cancer Res. 2017; 77(21):5769-5781 [PubMed] Related Publications
Lung squamous cell carcinoma (SCC), accounting for approximately 30% of non-small cell lung cancer, is often refractory to therapy. Screening a small-molecule library, we identified digitoxin as a high potency compound for suppressing human lung SCC growth

Liu T, Kan XF, Ma C, et al.
GPX2 overexpression indicates poor prognosis in patients with hepatocellular carcinoma.
Tumour Biol. 2017; 39(6):1010428317700410 [PubMed] Related Publications
Glutathione peroxidase 2 has important role of tumor progression in lots of carcinomas, yet little is known about the prognosis of glutathione peroxidase 2 in hepatocellular carcinoma. Glutathione peroxidase 2 expression was assessed by immunohistochemistry in hepatocellular carcinoma tissues. The association between glutathione peroxidase 2 expression with clinicopathological/prognostic value was examined. Glutathione peroxidase 2 overexpression was correlated with alpha-fetoprotein level, larger tumor, BCLC stage, and tumor recurrence. Kaplan-Meier analysis showed that glutathione peroxidase 2 was an independent predictor for overall survival and time to recurrence. glutathione peroxidase 2 overexpression was correlated with poor prognosis in patient subgroups stratified by tumor size, differentiation, tumor-node-metastasis, and BCLC stage. Moreover, stratified analysis showed that tumor-node-metastasis stage-I patients with high glutathione peroxidase 2 expression had poor prognosis than those with low glutathione peroxidase 2 expression. Additionally, combination of glutathione peroxidase 2 and serum alpha-fetoprotein was correlated with prognosis in hepatocellular carcinoma. In conclusion, glutathione peroxidase 2 overexpression contributes to poor prognosis of hepatocellular carcinoma patients and helps to identify the high-risk hepatocellular carcinoma patients.

Liu D, Sun L, Tong J, et al.
Prognostic significance of glutathione peroxidase 2 in gastric carcinoma.
Tumour Biol. 2017; 39(6):1010428317701443 [PubMed] Related Publications
Increasing evidence suggests that the glutathione peroxidase 2 may actually play important roles in tumorigenesis and progression in various human cancers such as colorectal carcinomas and lung adenocarcinomas. However, the role of glutathione peroxidase 2 in gastric carcinoma remains to be determined. In this study, the expression and prognostic significance of glutathione peroxidase 2 in gastric carcinoma were investigated and the well-known prognostic factor Ki-67 labeling index was also assessed as positive control. Glutathione peroxidase 2 expression levels in the tumor tissue specimens, the matched adjacent normal tissue specimens, and the lymph node metastases of 176 patients with gastric carcinoma were evaluated by quantitative polymerase chain reaction, western blotting, and immunohistochemical staining. The associations between glutathione peroxidase 2 expression levels, as determined by immunohistochemical staining, and multiple clinicopathological characteristics were determined by Pearson's chi-square test and Spearman's correlation analysis. The relationships between glutathione peroxidase 2 expression and other clinicopathological variables and patient prognoses were analyzed further by the Kaplan-Meier method, the log-rank test, and Cox multivariate regression. The quantitative polymerase chain reaction, western blotting, and immunohistochemical staining results showed that glutathione peroxidase 2 expression levels were upregulated in both the primary tumor foci and the lymph node metastases of patients with gastric carcinoma (all p values < 0.05). Furthermore, Pearson's chi-square tests, as well as Spearman's correlation analysis, revealed that glutathione peroxidase 2 expression levels were strongly correlated with the Ki-67 labeling index, differentiation, histological patterns, Lauren classifications, lymph node metastasis, vascular invasion, tumor-node-metastasis stages, Helicobacter pylori infection, and overall survival (all p values < 0.05). Kaplan-Meier analysis, as well as the log-rank test and multivariate Cox regression analysis, showed that multiple clinicopathological risk factors and glutathione peroxidase 2 expression were novel independent prognostic factors for gastric carcinoma (all p values < 0.05). Glutathione peroxidase 2 expression is a novel independent prognostic biomarker for gastric carcinoma that may be used to devise personalized therapeutic regimens and precision treatments for this disease.

Soo HC, Chung FF, Lim KH, et al.
Cudraflavone C Induces Tumor-Specific Apoptosis in Colorectal Cancer Cells through Inhibition of the Phosphoinositide 3-Kinase (PI3K)-AKT Pathway.
PLoS One. 2017; 12(1):e0170551 [PubMed] Free Access to Full Article Related Publications
Cudraflavone C (Cud C) is a naturally-occurring flavonol with reported anti-proliferative activities. However, the mechanisms by which Cud C induced cytotoxicity have yet to be fully elucidated. Here, we investigated the effects of Cud C on cell proliferation, caspase activation andapoptosis induction in colorectal cancer cells (CRC). We show that Cud C inhibits cell proliferation in KM12, Caco-2, HT29, HCC2998, HCT116 and SW48 CRC but not in the non-transformed colorectal epithelial cells, CCD CoN 841. Cud C induces tumor-selective apoptosis via mitochondrial depolarization and activation of the intrinsic caspase pathway. Gene expression profiling by microarray analyses revealed that tumor suppressor genes EGR1, HUWE1 and SMG1 were significantly up-regulated while oncogenes such as MYB1, CCNB1 and GPX2 were down-regulated following treatment with Cud C. Further analyses using Connectivity Map revealed that Cud C induced a gene signature highly similar to that of protein synthesis inhibitors and phosphoinositide 3-kinase (PI3K)-AKT inhibitors, suggesting that Cud C might inhibit PI3K-AKT signaling. A luminescent cell free PI3K lipid kinase assay revealed that Cud C significantly inhibited p110β/p85α PI3K activity, followed by p120γ, p110δ/p85α, and p110α/p85α PI3K activities. The inhibition by Cud C on p110β/p85α PI3K activity was comparable to LY-294002, a known PI3K inhibitor. Cud C also inhibited phosphorylation of AKT independent of NFκB activity in CRC cells, while ectopic expression of myristoylated AKT completely abrogated the anti-proliferative effects, and apoptosis induced by Cud C in CRC. These findings demonstrate that Cud C induces tumor-selective cytotoxicity by targeting the PI3K-AKT pathway. These findings provide novel insights into the mechanism of action of Cud C, and indicate that Cud C further development of Cud C derivatives as potential therapeutic agents is warranted.

Lan X, Xing J, Gao H, et al.
Decreased Expression of Selenoproteins as a Poor Prognosticator of Gastric Cancer in Humans.
Biol Trace Elem Res. 2017; 178(1):22-28 [PubMed] Related Publications
The aim of the present study was to analyze the selenoprotein expression levels in gastric cancer patients. We enrolled 40 patients (29 males, 11 females) who were recently diagnosed with gastric cancer and 50 healthy people (30 males, 20 females) as controls. The expression of 25 selenoprotein genes (Dio1, Dio2, Dio3, Gpx1, Gpx2, Gpx3, Gpx4, Gpx6, SelH, SelI, SelK, SelM, SelN, SelO, SelP, SelS, SelT, SelV, SelW, SelX, Sel15, Sps2, TR1, TR2, and TR3) in human gastric cancer tissues, para-carcinoma tissues, adjacent normal gastric tissues, erythrocytes, and lymphocytes in the gastric cancer group and healthy control group was analyzed by qRT-PCR. Here, we showed that among the 25 selenoproteins, 13 selenoproteins in erythrocytes (Gpx1, Gpx4, Sel15, TR1, TR2, SelH, SelK, SelM, SelO, SelS, SelV, SelW, and Sps2), 15 selenoproteins in lymphocytes (Gpx1, Gpx4, Sel15, TR1, TR2, SelH, SelK, SelN, SelO, SelS, SelT, SelV, SelX, SelW, and Sps2) and 13 selenoproteins in gastric cancer and para-carcinoma tissues (Dio1, Dio2, Dio3, Gpx1, Gpx4, Sel15, SelH, SelK, SelM, SelS, SelT, SelW, and Sps2) were significantly decreased (P < 0.05) in the gastric cancer group compared to the control group. In summary, the decreasing expression of selenoprotein genes in gastric cancer patients play an important role in the gastric cancer, although further studies are needed to better understand our findings.

Nguyen BN, Okuno Y, Ajiro M, et al.
Retinoid derivative Tp80 exhibits anti-hepatitis C virus activity through restoration of GI-GPx expression.
J Med Virol. 2017; 89(7):1224-1234 [PubMed] Related Publications
Hepatitis C virus (HCV) is a positive-sense single-stranded RNA virus with an estimated infection in ∼180 million people worldwide, and its chronic infection leads to development of cirrhosis and hepatocellular carcinoma. Although recent development of direct acting antiviral (DAA) compounds improved anti-HCV regimens, alternative therapeutic compounds are still demanded due to an expected emergence of escape mutants for those DAAs. In order to identify novel anti-HCV agents, we conducted chemical library screening for 2086 compounds using HCV Rep-Feo reporter replicon in Huh7 hepatoma cells. Our screening identified retinoid derivative Tp80, which inhibits replication of HCV Rep-Feo (genotype 1b) and JFH1 HCV (genotype 2a) with 0.62 μM and 1.0 μM, respectively, of 50% effective concentration (EC

Lei Z, Tian D, Zhang C, et al.
Clinicopathological and prognostic significance of GPX2 protein expression in esophageal squamous cell carcinoma.
BMC Cancer. 2016; 16:410 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Chaoshan region, a littoral area of Guangdong province in southern China, has a high incidence of esophageal squamous cell carcinoma (ESCC). At present, the prognosis of ESCC is still very poor, therefore, there is urgent need to seek valuable molecular biomarker for prognostic evaluation to guide clinical treatment. GPX2, a selenoprotein, was exclusively expressed in gastrointestinal tract and has an anti-oxidative damage and anti-tumour effect in the progress of tumourigenesis.
METHODS: We collected 161 ESCC patients samples, among which 83 patients were followed up. We employed immunochemistry analysis, western blotting and quantitative real-time PCR for measuring the expression of GPX2 within ESCC samples. We analysed the relationship between the expression of GPX2 and clinicopathological parameters of 161 patients with ESCC by Chi-square or Fisher's exact test. The survival analysis of GPX2 expression within ESCC tissues was evaluated by the Kaplan-Meier method and Cox-regression.
RESULTS: A significant higher expression level of GPX2 was detected in tumour tissues compared to that in non-tumour tissues (P < 0.001). Moreover, GPX2 expression has statistically significant difference in the tumour histological grade of ESCC (P < 0.001), while there was no statistically significant difference in age, sex, tumour size, tumour location, gross morphology and clinical TNM stages (P > 0.05). Meanwhile, the expression of GPX2 protein was obviously down-regulated within poorly differentiated ESCC. Last, survival analysis revealed that tumour histological grade and clinical TNM stages, both of the clinical pathological parameters of ESCC, were associated with the prognosis of patients with ESCC (respectively, P = 0.009, HR (95 % CI) = 1.885 (1.212 ~ 2.932); P = 0.007, HR (95 % CI) = 2.046 (1.318 ~ 3.177)). More importantly, loss expression of GPX2 protein predicted poor prognosis in patients with ESCC (P < 0.001, HR (95 % CI) = 5.700 (2.337 ~ 13.907)).
CONCLUSIONS: Collectively, these results suggested that the expression of GPX2 was significantly up-regulated within ESCC tumour tissues. GPX2 might be an important predictor for the prognosis of ESCC and a potential target for intervention and treatment of ESCC.

Smirnov A, Panatta E, Lena A, et al.
FOXM1 regulates proliferation, senescence and oxidative stress in keratinocytes and cancer cells.
Aging (Albany NY). 2016; 8(7):1384-97 [PubMed] Free Access to Full Article Related Publications
Several transcription factors, including the master regulator of the epidermis, p63, are involved in controlling human keratinocyte proliferation and differentiation. Here, we report that in normal keratinocytes, the expression of FOXM1, a member of the Forkhead superfamily of transcription factors, is controlled by p63. We observe that, together with p63, FOXM1 strongly contributes to the maintenance of high proliferative potential in keratinocytes, whereas its expression decreases during differentiation, as well as during replicative-induced senescence. Depletion of FOXM1 is sufficient to induce keratinocyte senescence, paralleled by an increased ROS production and an inhibition of ROS-scavenger genes (SOD2, CAT, GPX2, PRDX). Interestingly, FOXM1 expression is strongly reduced in keratinocytes isolated from old human subjects compared with young subjects. FOXM1 depletion sensitizes both normal keratinocytes and squamous carcinoma cells to apoptosis and ROS-induced apoptosis. Together, these data identify FOXM1 as a key regulator of ROS in normal dividing epithelial cells and suggest that squamous carcinoma cells may also use FOXM1 to control oxidative stress to escape premature senescence and apoptosis.

Zmorzyński S, Świderska-Kołacz G, Koczkodaj D, Filip AA
Significance of Polymorphisms and Expression of Enzyme-Encoding Genes Related to Glutathione in Hematopoietic Cancers and Solid Tumors.
Biomed Res Int. 2015; 2015:853573 [PubMed] Free Access to Full Article Related Publications
Antioxidant compounds such as glutathione and its enzymes have become the focus of attention of medical sciences. Glutathione, a specific tripeptide, is involved in many intercellular processes. The glutathione concentration is determined by the number of GAG repeats in gamma-glutamylcysteine synthetase. GAG polymorphisms are associated with an increased risk of schizophrenia, berylliosis, diabetes, lung cancer, and nasopharyngeal tumors. Cancer cells with high glutathione concentration are resistant to chemotherapy treatment. The oxidized form of glutathione is formed by glutathione peroxidases (GPXs). The changes in activity of GPX1, GPX2, and GPX3 isoforms may be associated with the development of cancers, for example, prostate cancer or even colon cancer. Detoxification of glutathione conjugates is possible due to activity of glutathione S-transferases (GSTs). Polymorphisms in GSTM1, GSTP1, and GSTO1 enzymes increase the risk of developing breast cancer and hepatocellular carcinoma. Gamma-glutamyl transpeptidases (GGTs) are responsible for glutathione degradation. Increased activity of GGT correlates with adverse prognosis in patients with breast cancer. Studies on genes encoding glutathione enzymes are continued in order to determine the correlation between DNA polymorphisms in cancer patients.

Chang IW, Lin VC, Hung CH, et al.
GPX2 underexpression indicates poor prognosis in patients with urothelial carcinomas of the upper urinary tract and urinary bladder.
World J Urol. 2015; 33(11):1777-89 [PubMed] Related Publications
PURPOSE: Oxidative stress is believed to be one of the important etiologies in carcinogenesis that has not been systemically investigated in urothelial carcinoma (UC). Through data mining from a published transcriptomic database of UC of urinary bladders (UBUCs) (GSE31684), glutathione peroxidase 2 (GPX2) was identified as the most significant downregulated gene among those response to oxidative stress (GO:0006979). We therefore analyze GPX2 transcript and protein expressions and its clinicopathological significance.
METHODS: Real-time RT-PCR assay was used to detect GPX2 mRNA level in 20 fresh UBUC specimens. Immunohistochemistry was used to determine GPX2 protein expression in 340 urothelial carcinomas of upper tracts (UTUCs) and 295 UBUCs with mean/median follow-up of 44.7/38.9 and 30.8/23.1 months, respectively. Its expression status was further correlated with clinicopathological features and evaluated for its impact on disease-specific survival and metastasis-free survival (MeFS).
RESULTS: Decrease in GPX2 transcript level was associated with both higher pT and positive nodal status in 20 UBUCs (all p < 0.05). GPX2 protein underexpression was also significantly associated with advanced pT status, nodal metastasis, high histological grade, vascular invasion, and frequent mitoses in both groups of UCs (all p < 0.05). GPX2 underexpression not only predicted dismal DDS and MeFS at univariate analysis, but also implicated worse DDS (UTUC, p = 0.002; UBUC, p = 0.029) and MeFS (UTUC, p = 0.001; UBUC, p = 0.032) in multivariate analysis.
CONCLUSIONS: GPX2 underexpression is associated with advanced tumor status and implicated unfavorable clinical outcome of UCs, suggesting its role in tumor progression and may serve as a theranostic biomarker of UCs.

Kim B, Kang S, Jeong G, et al.
Identification and comparison of aberrant key regulatory networks in breast, colon, liver, lung, and stomach cancers through methylome database analysis.
PLoS One. 2014; 9(5):e97818 [PubMed] Free Access to Full Article Related Publications
Aberrant methylation of specific CpG sites at the promoter is widely responsible for genesis and development of various cancer types. Even though the microarray-based methylome analyzing techniques have contributed to the elucidation of the methylation change at the genome-wide level, the identification of key methylation markers or top regulatory networks appearing common in highly incident cancers through comparison analysis is still limited. In this study, we in silico performed the genome-wide methylation analysis on each 10 sets of normal and cancer pairs of five tissues: breast, colon, liver, lung, and stomach. The methylation array covers 27,578 CpG sites, corresponding to 14,495 genes, and significantly hypermethylated or hypomethylated genes in the cancer were collected (FDR adjusted p-value <0.05; methylation difference >0.3). Analysis of the dataset confirmed the methylation of previously known methylation markers and further identified novel methylation markers, such as GPX2, CLDN15, and KL. Cluster analysis using the methylome dataset resulted in a diagram with a bipartite mode distinguishing cancer cells from normal cells regardless of tissue types. The analysis further revealed that breast cancer was closest with lung cancer, whereas it was farthest from colon cancer. Pathway analysis identified that either the "cancer" related network or the "cancer" related bio-function appeared as the highest confidence in all the five cancers, whereas each cancer type represents its tissue-specific gene sets. Our results contribute toward understanding the essential abnormal epigenetic pathways involved in carcinogenesis. Further, the novel methylation markers could be applied to establish markers for cancer prognosis.

Wang S, Tu J, Zhou C, et al.
The effect of Lfcin-B on non-small cell lung cancer H460 cells is mediated by inhibiting VEGF expression and inducing apoptosis.
Arch Pharm Res. 2015; 38(2):261-71 [PubMed] Related Publications
Lfcin-B, an antimicrobial peptide found in various exocrine secretions of mammals, showed antitumor effects. However, the effect and relative mechanism of Lfcin-B on non-small cell lung cancer is unclear. In this study, assay of cell viability, quantitative real-time PCR, Western blot, annexin V/propidium iodide assay, flow cytometry and tumor-xenograft model were applied to elucidate the mechanism of Lfcin-B on non-small cell lung cancer NCI-H460 (H460) cells. Lfcin-B significantly suppressed the proliferation of H460 cells in vitro. Additionally, the transcription and translation of the VEGF gene in H460 cells were restrained after exposure to Lfcin-B. Moreover, the apoptosis of H460 cells was induced by Lfcin-B through stimulating caspase-3, caspase-9 and preventing survivin expression on both the transcription and translation level. Meanwhile, Lfcin-B increased the production of reactive oxygen species and suppressed the RNA of antioxidant enzymes (GPX1, GPX2, SOD3 and catalase) in H460 cells. Finally, Lfcin-B significantly prevented the tumor growth in the H460-bearing mice model. These results indicated that Lfcin-B could be a potential candidate for the treatment of lung cancer.

Naiki T, Naiki-Ito A, Asamoto M, et al.
GPX2 overexpression is involved in cell proliferation and prognosis of castration-resistant prostate cancer.
Carcinogenesis. 2014; 35(9):1962-7 [PubMed] Related Publications
There is a need for exploration of new therapeutic strategies that target distinct molecular mechanisms of castration-resistant prostate cancer (CRPC) because its emergence following androgen deprivation therapy is a major clinical problem. In this report, we investigated the role of glutathione peroxidase 2 (GPX2) in CRPC. GPX2 expression was analyzed in rat and human CRPC cells. Next, we determined the proliferation rate and level of reactive oxygen species (ROS) in GPX2-small interfering RNA (siRNA)-transfected CRPC cells. For in vivo analysis, siRNA-transfected cells were subcutaneously implanted into normal and castrated nude mice. Further, immunohistochemical and prognostic analyses of GPX2 were performed using human specimens. Silencing of GPX2 caused significant growth inhibition and increased intracellular ROS in both rat (PCai1) and human (PC3) CRPC cells. Flow cytometry and western blot analyses revealed that the decrease in proliferation rate of the GPX2-silenced cells was due to cyclin B1-dependent G2/M arrest. Furthermore, knockdown of Gpx2 inhibited tumor growth of PCai1 cells in castrated mice. Immunohistochemical analyses indicated that expression of GPX2 was significantly higher in residual cancer foci after neoadjuvant hormonal therapy than in hormone naive cancer foci. Moreover, patients with high GPX2 expression in biopsy specimen had significantly lower prostate-specific antigen recurrence-free survival and overall survival than those with no GPX2 expression. These findings suggest that GPX2 is a prognostic marker in CRPC and affects proliferation of prostate cancer under androgen depletion partially through protection against ROS signaling.

Pellatt AJ, Wolff RK, John EM, et al.
SEPP1 influences breast cancer risk among women with greater native american ancestry: the breast cancer health disparities study.
PLoS One. 2013; 8(11):e80554 [PubMed] Free Access to Full Article Related Publications
Selenoproteins are a class of proteins containing a selenocysteine residue, many of which have been shown to have redox functions, acting as antioxidants to decrease oxidative stress. Selenoproteins have previously been associated with risk of various cancers and redox-related diseases. In this study we evaluated possible associations between breast cancer risk and survival and single nucleotide polymorphisms (SNPs) in the selenoprotein genes GPX1, GPX2, GPX3, GPX4, SELS, SEP15, SEPN1, SEPP1, SEPW1, TXNRD1, and TXNRD2 among Hispanic/Native American (2111 cases, 2597 controls) and non-Hispanic white (NHW) (1481 cases, 1586 controls) women in the Breast Cancer Health Disparities Study. Adaptive Rank Truncated Product (ARTP) analysis was used to determine both gene and pathway significance with these genes. The overall selenoprotein pathway PARTP was not significantly associated with breast cancer risk (PARTP = 0.69), and only one gene, GPX3, was of borderline significance for the overall population (PARTP =0.09) and marginally significant among women with 0-28% Native American (NA) ancestry (PARTP=0.06). The SEPP1 gene was statistically significantly associated with breast cancer risk among women with higher NA ancestry (PARTP=0.002) and contributed to a significant pathway among those women (PARTP=0.04). GPX1, GPX3, and SELS were associated with Estrogen Receptor-/Progesterone Receptor+ status (PARTP = 0.002, 0.05, and 0.01, respectively). Four SNPs (GPX3 rs2070593, rsGPX4 rs2074451, SELS rs9874, and TXNRD1 rs17202060) significantly interacted with dietary oxidative balance score after adjustment for multiple comparisons to alter breast cancer risk. GPX4 was significantly associated with breast cancer survival among those with the highest NA ancestry (PARTP = 0.05) only. Our data suggest that SEPP1 alters breast cancer risk among women with higher levels of NA ancestry.

Verschoor ML, Singh G
Ets-1 regulates intracellular glutathione levels: key target for resistant ovarian cancer.
Mol Cancer. 2013; 12(1):138 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Ovarian cancer is characterized by high rates of metastasis and therapeutic resistance. Many chemotherapeutic agents rely on the induction of oxidative stress to cause cancer cell death, thus targeting redox regulation is a promising strategy to overcome drug resistance.
METHODS: We have used a tetracycline-inducible Ets-1 overexpression model derived from 2008 ovarian cancer cells in the present study. To examine the role of Ets-1 in glutathione regulation we have measured intracellular reactive oxygen species and glutathione levels, as well as glutathione peroxidase enzyme activity. Glutathione synthesis was limited using transsulfuration or Sx(c)- pathway blocking agents, and glutamate release was measured to confirm Sx(c)- blockade. Cell viability following drug treatment was assessed via crystal violet assay. Oxidative stress was induced through glucose oxidase treatment, which produces hydrogen peroxide by glucose oxidation. The protein expressions of redox-related factors were measured through western blotting.
RESULTS: Overexpression of Ets-1 was associated with decreased intracellular ROS, concomitantly with increased intracellular GSH, GPX antioxidant activity, and Sx(c)- transporter activity. Under basal conditions, inhibition of the transsulfuration pathway resulted in decreased GSH levels and GPX activity in all cell lines, whereas inhibition of Sx(c)- by sulfasalazine decreased GPX activity in Ets-1-expressing cells only. However, under oxidative stress the intracellular GSH levels decreased significantly in correlation with increased Ets-1 expression following sulfasalazine treatment.
CONCLUSIONS: In this study we have identified a role for proto-oncogene Ets-1 in the regulation of intracellular glutathione levels, and examined the effects of the anti-inflammatory drug sulfasalazine on glutathione depletion using an ovarian cancer cell model. The findings from this study show that Ets-1 mediates enhanced Sx(c)- activity to increase glutathione levels under oxidative stress, suggesting that Ets-1 could be a promising putative target to enhance conventional therapeutic strategies.

Méplan C, Dragsted LO, Ravn-Haren G, et al.
Association between polymorphisms in glutathione peroxidase and selenoprotein P genes, glutathione peroxidase activity, HRT use and breast cancer risk.
PLoS One. 2013; 8(9):e73316 [PubMed] Free Access to Full Article Related Publications
Breast cancer (BC) is one of the most common cancers in women. Evidence suggests that genetic variation in antioxidant enzymes could influence BC risk, but to date the relationship between selenoproteins and BC risk remains unclear. In this report, a study population including 975 Danish cases and 975 controls matched for age and hormone replacement therapy (HRT) use was genotyped for five functional single nucleotide polymorphisms (SNPs) in SEPP1, GPX1, GPX4 and the antioxidant enzyme SOD2 genes. The influence of genetic polymorphisms on breast cancer risk was assessed using conditional logistic regression. Additionally pre-diagnosis erythrocyte GPx (eGPx) activity was measured in a sub-group of the population. A 60% reduction in risk of developing overall BC and ductal BC was observed in women who were homozygous Thr carriers for SEPP1 rs3877899. Additionally, Leu carriers for GPX1 Pro198Leu polymorphism (rs1050450) were at ∼2 fold increased risk of developing a non-ductal BC. Pre-diagnosis eGPx activity was found to depend on genotype for rs713041 (GPX4), rs3877899 (SEPP1), and rs1050450 (GPX1) and on HRT use. Moreover, depending on genotype and HRT use, eGPx activity was significantly lower in women who developed BC later in life compared with controls. Furthermore, GPx1 protein levels increased in human breast adenocarcinoma MCF7 cells exposed to β-estradiol and sodium selenite.In conclusion, our data provide evidence that SNPs in SEPP1 and GPX1 modulate risk of BC and that eGPx activity is modified by SNPs in SEPP1, GPX4 and GPX1 and by estrogens. Our data thus suggest a role of selenoproteins in BC development.

Müller MF, Florian S, Pommer S, et al.
Deletion of glutathione peroxidase-2 inhibits azoxymethane-induced colon cancer development.
PLoS One. 2013; 8(8):e72055 [PubMed] Free Access to Full Article Related Publications
The selenoprotein glutathione peroxidase-2 (GPx2) appears to have a dual role in carcinogenesis. While it protected mice from colon cancer in a model of inflammation-triggered carcinogenesis (azoxymethane and dextran sodium sulfate treatment), it promoted growth of xenografted tumor cells. Therefore, we analyzed the effect of GPx2 in a mouse model mimicking sporadic colorectal cancer (azoxymethane-treatment only). GPx2-knockout (KO) and wild-type (WT) mice were adjusted to an either marginally deficient (-Se), adequate (+Se), or supranutritional (++Se) selenium status and were treated six times with azoxymethane (AOM) to induce tumor development. In the -Se and ++Se groups, the number of tumors was significantly lower in GPx2-KO than in respective WT mice. On the +Se diet, the number of dysplastic crypts was reduced in GPx2-KO mice. This may be explained by more basal and AOM-induced apoptotic cell death in GPx2-KO mice that eliminates damaged or pre-malignant epithelial cells. In WT dysplastic crypts GPx2 was up-regulated in comparison to normal crypts which might be an attempt to suppress apoptosis. In contrast, in the +Se groups tumor numbers were similar in both genotypes but tumor size was larger in GPx2-KO mice. The latter was associated with an inflammatory and tumor-promoting environment as obvious from infiltrated inflammatory cells in the intestinal mucosa of GPx2-KO mice even without any treatment and characterized as low-grade inflammation. In WT mice the number of tumors tended to be lowest in +Se compared to -Se and ++Se feeding indicating that selenium might delay tumorigenesis only in the adequate status. In conclusion, the role of GPx2 and presumably also of selenium depends on the cancer stage and obviously on the involvement of inflammation.

Suzuki S, Pitchakarn P, Ogawa K, et al.
Expression of glutathione peroxidase 2 is associated with not only early hepatocarcinogenesis but also late stage metastasis.
Toxicology. 2013; 311(3):115-23 [PubMed] Related Publications
Understanding of mechanisms of cancer progression is very important for reduction of cancer mortality. Of six rat hepatocellular carcinoma (HCC) cell lines, differing in their metastatic potential to the lung after inoculation into the tail vein of nude mice, the most metastatic featured particular overexpression of glutathione peroxidase 2 (GPX2). Therefore, we analyzed the influence of interference in highly metastatic L2 cells by siRNA transfection. Gpx2 siRNA significantly inhibited cell proliferation at 24 and 48h time points with induction of apoptosis but not cell cycle arrest. High expression of mutated p53 was detected in all HCC cell lines, with reduction in Gpx2 siRNA-transfected cells. Migration and invasion in vitro were also suppressed as compared to control siRNA-transfected cells and secretion of matrix metalloproteinase 9 was reduced. In vivo, the numbers and areas of metastatic nodules per area in the lungs were significantly reduced in the mice inoculated with Gpx2 siRNA-transfected cells as compared to control siRNA-transfected cells. In conclusion, expression of GPX2 is associated with cancer metastasis from rat HCCs both in vitro and in vivo. Together with immunohistochemical findings of elevated expression in rat and also human liver lesions, the results point to important roles in hepatocarcinogenesis.

Hakenewerth AM, Millikan RC, Rusyn I, et al.
Effects of polymorphisms in alcohol metabolism and oxidative stress genes on survival from head and neck cancer.
Cancer Epidemiol. 2013; 37(4):479-91 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Heavy alcohol consumption increases risk of developing squamous cell carcinoma of the head and neck (SCCHN). Alcohol metabolism to cytotoxic and mutagenic intermediates acetaldehyde and reactive oxygen species is critical for alcohol-drinking-associated carcinogenesis. We hypothesized that polymorphisms in alcohol metabolism-related and antioxidant genes influence SCCHN survival.
METHODS: Interview and genotyping data (64 polymorphisms in 12 genes) were obtained from 1227 white and African-American cases from the Carolina Head and Neck Cancer Epidemiology study, a population-based case-control study of SCCHN conducted in North Carolina from 2002 to 2006. Vital status, date and cause of death through 2009 were obtained from the National Death Index. Kaplan-Meier log-rank tests and adjusted hazard ratios were calculated to identify alleles associated with survival.
RESULTS: Most tested SNPs were not associated with survival, with the exception of the minor alleles of rs3813865 and rs8192772 in CYP2E1. These were associated with poorer cancer-specific survival (HRrs3813865, 95% CI=2.00, 1.33-3.01; HRrs8192772, 95% CI=1.62, 1.17-2.23). Hazard ratios for 8 additional SNPs in CYP2E1, GPx2, SOD1, and SOD2, though not statistically significant, were suggestive of differences in allele hazards for all-cause and/or cancer death. No consistent associations with survival were found for SNPs in ADH1B, ADH1C, ADH4, ADH7, ALDH2, GPx2, GPx4, and CAT.
CONCLUSIONS: We identified some polymorphisms in alcohol and oxidative stress metabolism genes that influence survival in subjects with SCCHN. Previously unreported associations of SNPs in CYP2E1 warrant further investigation.

Shahdoust M, Hajizadeh E, Mozdarani H, Chehrei A
Finding genes discriminating smokers from non-smokers by applying a growing self-organizing clustering method to large airway epithelium cell microarray data.
Asian Pac J Cancer Prev. 2013; 14(1):111-6 [PubMed] Related Publications
BACKGROUND: Cigarette smoking is the major risk factor for development of lung cancer. Identification of effects of tobacco on airway gene expression may provide insight into the causes. This research aimed to compare gene expression of large airway epithelium cells in normal smokers (n=13) and non-smokers (n=9) in order to find genes which discriminate the two groups and assess cigarette smoking effects on large airway epithelium cells.
MATERIALS AND METHODS: Genes discriminating smokers from non-smokers were identified by applying a neural network clustering method, growing self-organizing maps (GSOM), to microarray data according to class discrimination scores. An index was computed based on differentiation between each mean of gene expression in the two groups. This clustering approach provided the possibility of comparing thousands of genes simultaneously.
RESULTS: The applied approach compared the mean of 7,129 genes in smokers and non-smokers simultaneously and classified the genes of large airway epithelium cells which had differently expressed in smokers comparing with non-smokers. Seven genes were identified which had the highest different expression in smokers compared with the non-smokers group: NQO1, H19, ALDH3A1, AKR1C1, ABHD2, GPX2 and ADH7. Most (NQO1, ALDH3A1, AKR1C1, H19 and GPX2) are known to be clinically notable in lung cancer studies. Furthermore, statistical discriminate analysis showed that these genes could classify samples in smokers and non-smokers correctly with 100% accuracy. With the performed GSOM map, other nodes with high average discriminate scores included genes with alterations strongly related to the lung cancer such as AKR1C3, CYP1B1, UCHL1 and AKR1B10.
CONCLUSIONS: This clustering by comparing expression of thousands of genes at the same time revealed alteration in normal smokers. Most of the identified genes were strongly relevant to lung cancer in the existing literature. The genes may be utilized to identify smokers with increased risk for lung cancer. A large sample study is now recommended to determine relations between the genes ABHD2 and ADH7 and smoking.

Geybels MS, Hutter CM, Kwon EM, et al.
Variation in selenoenzyme genes and prostate cancer risk and survival.
Prostate. 2013; 73(7):734-42 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: While several studies showed that selenium may prevent prostate cancer (PCa), few studies have evaluated variation in selenoenzyme genes in relation to PCa risk and survival.
METHODS: We studied common variants in seven selenoenzymes genes in relation to risk of PCa and PCa-specific mortality (PCSM). In a population-based case-control study of men of European ancestry (1,309 cases, 1,266 controls), we evaluated 35 common, tagging single nucleotide polymorphisms (SNPs) in GPX1 (n = 2), GPX2 (n = 4), GPX3 (n = 6), GPX4 (n = 6), SEP15 (n = 4), SEPP1 (n = 6), and TXNRD1 (n = 7) in relation to PCa risk, and among cases, associations between these variants and risk of PCSM. We used logistic regression and Cox proportional hazards regression to estimate the relative risk of PCa and PCSM, respectively.
RESULTS: Of the SNPs examined, only GPX1 rs3448 was associated with overall PCa risk with an odds ratio of 0.62 for TT versus CC (95% confidence interval, 0.44-0.88). SNPs in GPX2, GPX3, GPX4, SEP15, and SEPP1 had different risk estimates for PCa in subgroups based on stage and grade. We observed associations between SNPs in GPX4, and TXNRD1 and risk of PCSM. None of these associations, however, remained significant after adjustment for multiple comparisons.
CONCLUSIONS: We found evidence that genetic variation in a subset of selenoenzyme genes may alter risk of PCa and PCSM. These results need validation in additional subsets.

Kipp AP, Müller MF, Göken EM, et al.
The selenoproteins GPx2, TrxR2 and TrxR3 are regulated by Wnt signalling in the intestinal epithelium.
Biochim Biophys Acta. 2012; 1820(10):1588-96 [PubMed] Related Publications
BACKGROUND: The glutathione peroxidase 2 (GPx2) is expressed at crypt bases of the intestinal epithelium and in tumour tissue. The GPx2 promoter is activated by the Wnt pathway, which might be the reason for the specific expression pattern of GPx2. Together with additional selenoproteins, thioredoxin reductases TrxR2 and TrxR3, which are putative Wnt targets based on microarray analysis, Wnt-dependent GPx2 expression was analysed.
METHODS: Two cell culture models for either an activated (3T3 cells with Wnt3a overexpression) or an inhibited Wnt pathway (HT-29 APC cells) were analysed. To provide physiological relevance, crypt base epithelial cells of the jejunum and colon of mice were compared to cells of the villus or crypt table, respectively. In addition, β-catenin was deleted in crypt base cells ex vivo.
RESULTS: In cancer cell lines, the endogenous expression of all three selenoproteins was consistently dependent on Wnt pathway activity. Expression was higher in the proliferative crypt compartment, where also the Wnt pathway is active. An inducible knockout of β-catenin in isolated colonic crypt base cells reduced basal GPx2 expression. We, thus, demonstrated the regulation of GPx2 expression by the Wnt pathway in vitro and in vivo. Furthermore, the selenoproteins TrxR2 and TrxR3 have been identified as novel Wnt targets. This may imply a role of GPx2, TrxR2 and TrxR3 in proliferation, apoptosis and, therefore, also during cancer development.
GENERAL SIGNIFICANCE: Selenium which is essential for the biosynthesis of Wnt-dependent selenoproteins might be important for the renewal of the intestinal epithelium and during carcinogenesis.

Ziskin JL, Dunlap D, Yaylaoglu M, et al.
In situ validation of an intestinal stem cell signature in colorectal cancer.
Gut. 2013; 62(7):1012-23 [PubMed] Related Publications
OBJECTIVE: Wnt/Tcf, Lgr5, Ascl2 and/or Bmi1 signalling is believed to define the mouse intestinal stem cell niche(s) from which adenomas arise. The aim of this study was to determine the relevance of these putative intestinal stem cell markers to human colorectal cancer.
DESIGN: 19 putative intestinal stem cell markers, including Ascl2 and Lgr5, were identified from published data and an evaluation of a human colorectal gene expression database. Associations between these genes were assessed by isotopic in situ hybridisation (ISH) in 57 colorectal adenocarcinomas. Multiplex fluorescent ISH and chromogenic non-isotopic ISH were performed to confirm expression patterns. The prognostic significance of Lgr5 was assessed in 891 colorectal adenocarcinomas.
RESULTS: Ascl2 and Lgr5 were expressed in 85% and 74% of cancers respectively, and expression was positively correlated (p=0.003). Expression of Bmi1 was observed in 47% of cancers but was very weak in 98% of cases with expression. Both Ascl2 and/or Lgr5 were positively correlated with the majority of genes in the signature but neither was correlated with Cdk6, Gpx2, Olfm4 or Tnfrsf19. Lgr5 did not have prognostic significance.
CONCLUSION: These data suggest that 74-85% of colorectal cancers express a Lgr5/Ascl2 associated signature and support the hypothesis that they derive from Lgr5(+)/Ascl2(+) crypt stem cells, not Bmi1(+) stem cells. However, Olfm4 was not found to be a useful marker of Lgr5(+) cells in normal colon or tumours. In this large series, Lgr5 expression is not associated with increased tumour aggressiveness, as might be expected from a cancer stem cell marker.

Barrera LN, Cassidy A, Johnson IT, et al.
Epigenetic and antioxidant effects of dietary isothiocyanates and selenium: potential implications for cancer chemoprevention.
Proc Nutr Soc. 2012; 71(2):237-45 [PubMed] Related Publications
There is evidence from epidemiological studies suggesting that increased consumption of cruciferous vegetables may protect against specific cancers more effectively than total fruit and vegetable intake. These beneficial effects are attributed to the glucosinolate breakdown products, isothiocyanates (ITC). Similarly, selenium (Se) consumption has also been inversely associated with cancer risk and as an integral part of many selenoproteins may influence multiple pathways in the development of cancer. This paper will briefly review the current state of knowledge concerning the effect of Se and ITC in cancer development with a particular emphasis on its antioxidant properties, and will also address whether alterations in DNA methylation may be a potential mechanism whereby these dietary constituents protect against the carcinogenic process. Furthermore, we will discuss the advantages of combining ITC and Se to benefit from their complementary mechanisms of action to potentially protect against the alterations leading to neoplasia. Based on this review it may be concluded that an understanding of the impact of ITC and Se on aberrant DNA methylation in relation to factors modulating gene-specific and global methylation patterns, in addition to the effect of these food constituents as modulators of key selenoenzymes, such as gastrointestinal glutathione peroxidase-2 (GPx2) and thioredoxin reductase-1 (TrxR1), may provide insights into the potential synergy among various components of a plant-based diet that may counteract the genetic and epigenetic alterations that initiate and sustain neoplasia.

Haug U, Poole EM, Xiao L, et al.
Glutathione peroxidase tagSNPs: associations with rectal cancer but not with colon cancer.
Genes Chromosomes Cancer. 2012; 51(6):598-605 [PubMed] Free Access to Full Article Related Publications
Glutathione peroxidases (GPXs) are selenium-dependent enzymes that reduce and, thus, detoxify hydrogen peroxide and a wide variety of lipid hydroperoxides. We investigated tagSNPs in GPX1-4 in relation to colorectal neoplasia in three independent study populations capturing the range of colorectal carcinogenesis from adenoma to cancer. A linkage-disequilibrium (LD)-based tagSNP selection algorithm (r(2) ≥ 0.90, MAF ≥ 4%) identified 21 tagSNPs. We used an identical Illumina platform to genotype GPX SNPs in three population-based case-control studies of colon cancer (1,424 cases/1,780 controls), rectal cancer (583 cases/775 controls), and colorectal adenomas (485 cases/578 controls). For gene-level associations, we conducted principal component analysis (PCA); multiple logistic regression was used for single SNPs. Analyses were adjusted for age, sex, and study center and restricted to non-Hispanic white participants. Analyses of cancer endpoints were stratified by molecular subtypes. Without correction for multiple testing, one polymorphism in GPX2 and three polymorphisms in GPX3 were associated with a significant risk reduction for rectal cancer at α = 0.05, specifically for rectal cancers with TP53 mutations. The associations regarding the three polymorphisms in GPX3 remained statistically significant after adjustment for multiple comparisons. The PCA confirmed an overall association of GPX3 with rectal cancer (P = 0.03). No other statistically significant associations were observed. Our data provide preliminary evidence that genetic variability in GPX3 contributes to risk of rectal cancer but not of colon cancer and thus provide additional support for differences in underlying pathogenetic mechanisms for colon and rectal cancer.

Hakenewerth AM, Millikan RC, Rusyn I, et al.
Joint effects of alcohol consumption and polymorphisms in alcohol and oxidative stress metabolism genes on risk of head and neck cancer.
Cancer Epidemiol Biomarkers Prev. 2011; 20(11):2438-49 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Single-nucleotide polymorphisms (SNP) in alcohol metabolism genes are associated with squamous cell carcinoma of the head and neck (SCCHN) and may influence cancer risk in conjunction with alcohol. Genetic variation in the oxidative stress pathway may impact the carcinogenic effect of reactive oxygen species produced by ethanol metabolism. We hypothesized that alcohol interacts with these pathways to affect SCCHN incidence.
METHODS: Interview and genotyping data for 64 SNPs were obtained from 2,552 European- and African-American subjects (1,227 cases and 1,325 controls) from the Carolina Head and Neck Cancer Epidemiology Study, a population-based case-control study of SCCHN conducted in North Carolina from 2002 to 2006. We estimated ORs and 95% confidence intervals (CI) for SNPs and haplotypes, adjusting for age, sex, race, and duration of cigarette smoking. P values were adjusted for multiple testing using Bonferroni correction.
RESULTS: Two SNPs were associated with SCCHN risk: ADH1B rs1229984 A allele (OR = 0.7; 95% CI, 0.6-0.9) and ALDH2 rs2238151 C allele (OR = 1.2; 95% CI, 1.1-1.4). Three were associated with subsite tumors: ADH1B rs17028834 C allele (larynx, OR = 1.5; 95% CI, 1.1-2.0), SOD2 rs4342445 A allele (oral cavity, OR = 1.3; 95% CI, 1.1-1.6), and SOD2 rs5746134 T allele (hypopharynx, OR = 2.1; 95% CI, 1.2-3.7). Four SNPs in alcohol metabolism genes interacted additively with alcohol consumption: ALDH2 rs2238151, ADH1B rs1159918, ADH7 rs1154460, and CYP2E1 rs2249695. No alcohol interactions were found for oxidative stress SNPs.
CONCLUSIONS AND IMPACT: Previously unreported associations of SNPs in ALDH2, CYP2E1, GPX2, SOD1, and SOD2 with SCCHN and subsite tumors provide evidence that alterations in alcohol and oxidative stress pathways influence SCCHN carcinogenesis and warrant further investigation.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. GPX2, Cancer Genetics Web: http://www.cancer-genetics.org/GPX2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999