COPS5

Gene Summary

Gene:COPS5; COP9 signalosome subunit 5
Aliases: CSN5, JAB1, SGN5, MOV-34
Location:8q13.1
Summary:The protein encoded by this gene is one of the eight subunits of COP9 signalosome, a highly conserved protein complex that functions as an important regulator in multiple signaling pathways. The structure and function of COP9 signalosome is similar to that of the 19S regulatory particle of 26S proteasome. COP9 signalosome has been shown to interact with SCF-type E3 ubiquitin ligases and act as a positive regulator of E3 ubiquitin ligases. This protein is reported to be involved in the degradation of cyclin-dependent kinase inhibitor CDKN1B/p27Kip1. It is also known to be an coactivator that increases the specificity of JUN/AP1 transcription factors. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:COP9 signalosome complex subunit 5
Source:NCBIAccessed: 31 August, 2019

Ontology:

What does this gene/protein do?
Show (19)
Pathways:What pathways are this gene/protein implicaed in?
Show (3)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 31 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 31 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: COPS5 (cancer-related)

Guo Z, Wang Y, Zhao Y, et al.
The pivotal oncogenic role of Jab1/CSN5 and its therapeutic implications in human cancer.
Gene. 2019; 687:219-227 [PubMed] Related Publications
Jab1/CSN5 is a conserved multifunctional protein involved in ubiquitin-mediated protein degradation. Deregulation of Jab1/CSN5 can exert dramatic effects on diverse cellular functions, including DNA repair, cell cycle control, apoptosis, angiogenesis, and signal transduction, all of which are critical for tumor development. Although increasing evidence has demonstrated that Jab1/CSN5 was overexpressed in a variety of human cancers and usually correlated with poor prognosis, little was known about the underlying regulatory principles that coordinated its function. In this review, we highlight recent advances of the oncogenic role of Jab1/CSN5 and its potential as a therapeutic target for anticancer intervention.

Wee Y, Wang T, Liu Y, et al.
A pan-cancer study of copy number gain and up-regulation in human oncogenes.
Life Sci. 2018; 211:206-214 [PubMed] Related Publications
AIM: There has been limited research on CNVs in oncogenes and we conducted a systematic pan-cancer analysis of CNVs and their gene expression changes. The aim of the present study was to provide an insight into the relationships between gene expression and oncogenesis.
MAIN METHODS: We collected all the oncogenes from ONGene database and overlapped with CNVs TCGA tumour samples from Catalogue of Somatic Mutations in Cancer database. We further conducted an integrative analysis of CNV with gene expression using the data from the matched TCGA tumour samples.
KEY FINDINGS: From our analysis, we found 637 oncogenes associated with CNVs in 5900 tumour samples. There were 204 oncogenes with frequent copy number of gain (CNG). These 204 oncogenes were enriched in cancer-related pathways including the MAPK cascade and Ras GTPases signalling pathways. By using corresponding tumour samples data to perform integrative analyses of CNVs and gene expression changes, we identified 95 oncogenes with consistent CNG occurrence and up-regulation in the tumour samples, which may represent the recurrent driving force for oncogenesis. Surprisingly, eight oncogenes shown concordant CNG and gene up-regulation in at least 250 tumour samples: INTS8 (355), ECT2 (326), LSM1 (310), DDHD2 (298), COPS5 (286), EIF3E (281), TPD52 (258) and ERBB2 (254).
SIGNIFICANCE: As the first report about abundant CNGs on oncogene and concordant change of gene expression, our results may be valuable for the design of CNV-based cancer diagnostic strategy.

Wei Y, Liu G, Wu B, et al.
Let-7d Inhibits Growth and Metastasis in Breast Cancer by Targeting Jab1/Cops5.
Cell Physiol Biochem. 2018; 47(5):2126-2135 [PubMed] Related Publications
BACKGROUND/AIMS: MicroRNAs (miRNAs) regulate the expressions of cancer-related genes, and are involved in the development and progression of various human cancers. Here, we performed further analyses to determine whether let-7d is functionally linked to Jab1 in breast cancer.
METHODS: In situ hybridization and immunohistochemical analyses were used to determine the level of let-7d and Jab1 in breast cancer clinical specimens and its correlation with clinicopathological data. Let-7d overexpressing breast cancer cell lines combined with mouse models bearing cell-derived xenografts were used to assess the functional role of let-7d both in vitro and in vivo.
RESULTS: In this study, we found that let-7d was downregulated in breast cancer tissues, coupled with the elevations of Jab1 protein expressions, compared with paired adjacent noncancerous breast tissues. Let-7d overexpression significantly suppressed the proliferation and invasion in MCF-7 and MDA-MB-231 cells. Dual luciferase reporter assay indicated that Jab1 was the direct target of let-7d. Stepwise studies from in vitro and in vivo experiments indicated that let-7d overexpression inhibited cell growth and decreased Jab1 expressions in breast cancer cells and nude mice tumor tissues. Statistical analyses demonstrated that breast cancer patients with low levels of let-7d or high levels of Jab1 had a significant correlation with worse prognosis.
CONCLUSION: These findings provide novel insights into molecular mechanism of let-7d and Jab1 in tumor development and progression of breast cancer, and thus let-7d/Jab1 are novel potential therapeutic targets for breast cancer patients.

Li J, Li Y, Wang B, et al.
CSN5/Jab1 facilitates non-small cell lung cancer cell growth through stabilizing survivin.
Biochem Biophys Res Commun. 2018; 500(2):132-138 [PubMed] Related Publications
CSN5/JAB1 is a critical subunit of the COP9 signalosome (CSN) and is essentially involved in diverse types of cancer, but little is known about the role of CSN5 in non-small cell lung cancer (NSCLC). In the current study, we found that CSN5 expression was higher in NSCLC tissues compared to the corresponding non-tumor tissues. High CSN5 expression level is closely correlated with tumor progression and poor survival in NSCLC patients. We also found that knockdown of CSN5 remarkably suppressed cell growth by inducing cell cycle arrest and apoptosis promotion in NSCLC cells. Mechanistic investigations revealed that CSN5 directly bound survivin and decreased its ubiquitination to enhance the protein stability of survivin. Additionally, our results confirmed that the tumor-promoting effects of CSN5 in NSCLC cells is at least partly through stabilization of survivin. Overall, our data suggested that CSN5 functions as an oncogenic gene in NSCLC, which could be a potential diagnostic and therapeutic target for NSCLC.

Liu H, Hu J, Pan H, et al.
CSN5 Promotes Hepatocellular Carcinoma Progression by SCARA5 Inhibition Through Suppressing β-Catenin Ubiquitination.
Dig Dis Sci. 2018; 63(1):155-165 [PubMed] Related Publications
BACKGROUND: Increasing evidence has suggested that E3 Ubiquitin Ligase CSN5 is a newly characterized oncogene involved in various types of cancer. Scavenger receptor class A member 5 (SCARA5) is an important regulator of biological processes in cancer cells. However, the roles and relationship of CSN5 and SCARA5 in hepatocellular carcinoma (HCC) remain unclear.
METHODS: We used RT-PCR, Western blot, and immunohistochemistry to measure CSN5 and SCARA5 expression in HCC tissues and corresponding non-tumor tissues. The CSN5 gene was overexpressed or silenced with lentiviral vectors in HCC cells. Cell proliferation was measured using CCK8 assay. And, the cell migration and invasion were analyzed by transwell assay.
RESULTS: We found that the expressions of CSN5 and SCARA5 are inversely correlated in HCC tissues, and CSN5 expression levels were negatively correlated with the levels of SCARA5 in various HCC cells. Furthermore, we found that high level of CSN5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis, but low level of SCARA5 expression correlated closely with tumor TNM stage, tumor size, and venous metastasis. Additionally, survival of patients with lower expression of CNS5 was significantly better than that of higher expression group, but the survival of patients with higher expression of SCARA5 was significantly better than that of lower expression group. Moreover, knockdown of CSN5 increased SCARA5 expression and inhibited the proliferation and metastasis of HCC cells in vitro and in vivo. Finally, we found that CSN5 regulated SCARA5 expression by modulating β-catenin. Mechanistically, our results indicate that CSN5 can decrease β-catenin ubiquitination to enhance the protein expression of SCARA5 in HCC cells.
CONCLUSIONS: Our data identified CSN5 as a critical oncoprotein involved in progression of HCC cells, which could serve as a potential therapeutic target in HCC patients.

El-Aarag SA, Mahmoud A, Hashem MH, et al.
In silico identification of potential key regulatory factors in smoking-induced lung cancer.
BMC Med Genomics. 2017; 10(1):40 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung cancer is a leading cause of cancer-related death worldwide and is the most commonly diagnosed cancer. Like other cancers, it is a complex and highly heterogeneous disease involving multiple signaling pathways. Identifying potential therapeutic targets is critical for the development of effective treatment strategies.
METHODS: We used a systems biology approach to identify potential key regulatory factors in smoking-induced lung cancer. We first identified genes that were differentially expressed between smokers with normal lungs and those with cancerous lungs, then integrated these differentially expressed genes (DEGs) with data from a protein-protein interaction database to build a network model with functional modules for pathway analysis. We also carried out a gene set enrichment analysis of DEG lists using the Kinase Enrichment Analysis (KEA), Protein-Protein Interaction (PPI) hubs, and KEGG (Kyoto Encyclopedia of Genes and Genomes) databases.
RESULTS: Twelve transcription factors were identified as having potential significance in lung cancer (CREB1, NUCKS1, HOXB4, MYCN, MYC, PHF8, TRIM28, WT1, CUX1, CRX, GABP, and TCF3); three of these (CRX, GABP, and TCF) have not been previously implicated in lung carcinogenesis. In addition, 11 kinases were found to be potentially related to lung cancer (MAPK1, IGF1R, RPS6KA1, ATR, MAPK14, MAPK3, MAPK4, MAPK8, PRKCZ, and INSR, and PRKAA1). However, PRKAA1 is reported here for the first time. MEPCE, CDK1, PRKCA, COPS5, GSK3B, BRCA1, EP300, and PIN1 were identified as potential hubs in lung cancer-associated signaling. In addition, we found 18 pathways that were potentially related to lung carcinogenesis, of which 12 (mitogen-activated protein kinase, gonadotropin-releasing hormone, Toll-like receptor, ErbB, and insulin signaling; purine and ether lipid metabolism; adherens junctions; regulation of autophagy; snare interactions in vesicular transport; and cell cycle) have been previously identified.
CONCLUSION: Our systems-based approach identified potential key molecules in lung carcinogenesis and provides a basis for investigations of tumor development as well as novel drug targets for lung cancer treatment.

Zhou F, Pan Y, Wei Y, et al.
Jab1/Csn5-Thioredoxin Signaling in Relapsed Acute Monocytic Leukemia under Oxidative Stress.
Clin Cancer Res. 2017; 23(15):4450-4461 [PubMed] Free Access to Full Article Related Publications

Jumpertz S, Hennes T, Asare Y, et al.
CSN5/JAB1 suppresses the WNT inhibitor DKK1 in colorectal cancer cells.
Cell Signal. 2017; 34:38-46 [PubMed] Related Publications
The COP9 signalosome (CSN) is a multi-protein complex that is highly conserved in eukaryotes. Due to its regulatory impact on processes such as cell cycle, DNA damage response and apoptosis, the CSN is essential for mammalian cells. One of the best-studied functions of the CSN is the deNEDDylation of cullin-RING ligases (CRLs) via its catalytically active subunit CSN5/JAB1, thereby triggering the degradation of various target proteins. CSN5 was found to be overexpressed in many human cancer entities, including colon adenocarcinoma. Overactivation of WNT signaling is known as a key step in colon cancer development. Recently, we found that depletion of CSN5 in colorectal cancer (CRC) cells affects WNT signaling by downregulation of β-catenin. To investigate changes in gene expression associated with the CSN5 knockdown, we performed a microarray using cDNA from the CRC cell line SW480. We found the WNT ligand WNT6 and the WNT inhibitors DKK1 and DKK4 differentially regulated in CSN5 knockdown cells. DKK1 expression and DKK1 protein levels depended on CSN5 in different CRC cell lines. In addition, DKK1 secretion was increased following CSN5 knockdown, affecting WNT signaling in SW480 cells. Consequently, blocking of secreted DKK1 in cell-conditioned media abolished β-catenin downregulation in SW480 cells, while treatment with recombinant DKK1 mimicked the CSN5 knockdown effect. Furthermore, knockdown of DKK1 was able to rescue the proliferative deficiency of CSN5 knockdown cells. We conclude that downregulation of WNT signaling in colorectal cancer cells resulting from CSN5 knockdown is mediated, at least in part, by elevated DKK1 secretion. Moreover, experiments with the NEDDylation inhibitor MLN-4924 indicated that DKK1 expression is regulated by a so far unidentified repressor, the stability of which could be controlled by a CSN-regulated CRL.

Grinberg-Bleyer Y, Ghosh S
A Novel Link between Inflammation and Cancer.
Cancer Cell. 2016; 30(6):829-830 [PubMed] Related Publications
Immune checkpoint-blockade treatments targeting PD-1/PD-L1 have revolutionized cancer therapy. Hence, understanding the regulation of PD-L1 expression has major clinical relevance. In this issue of Cancer Cell, Lim et al. report that inflammation-induced and NF-κB-driven expression of deubiquitinating enzyme CSN5 leads to PD-L1 stabilization and immune suppression in tumors.

Wicker CA, Izumi T
Analysis of RNA expression of normal and cancer tissues reveals high correlation of COP9 gene expression with respiratory chain complex components.
BMC Genomics. 2016; 17(1):983 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The COP9 signalosome, composed of eight subunits, is implicated in cancer genetics with its deneddylase activity to modulate cellular concentration of oncogenic proteins such as IkB and TGFβ. However, its function in the normal cell physiology remains elusive. Primarily focusing on gene expression data of the normal tissues of the head and neck, the cancer genome atlas (TCGA) database was used to identify groups of genes that were expressed synergistically with the COP9 genes, particularly with the COPS5 (CSN5), which possesses the catalytic activity of COP9.
RESULTS: Expressions of seven of the COP9 genes (COPS2, COPS3, COPS4, COPS5, COPS6, COPS7A, and COPS8) were found to be highly synergistic in the normal tissues. In contrast, the tumor tissues decreased the coordinated expression pattern of COP9 genes. Pathway analysis revealed a high coordination of the expression of the COPS5 and the other COP9 genes with mitochondria-related functional pathways, including genes encoding the respiratory chain complex.
CONCLUSIONS: The results indicate that mRNA expression data for the matched normal tissues available in TCGA are statistically reliable, and are highly useful to assess novel associations of genes with functional pathways in normal physiology as well as in the cancer tissues. This study revealed the significant correlation between the expressions of the COP9 genes and those related to the mitochondrial activity.

Schlierf A, Altmann E, Quancard J, et al.
Targeted inhibition of the COP9 signalosome for treatment of cancer.
Nat Commun. 2016; 7:13166 [PubMed] Free Access to Full Article Related Publications
The COP9 signalosome (CSN) is a central component of the activation and remodelling cycle of cullin-RING E3 ubiquitin ligases (CRLs), the largest enzyme family of the ubiquitin-proteasome system in humans. CRLs are implicated in the regulation of numerous cellular processes, including cell cycle progression and apoptosis, and aberrant CRL activity is frequently associated with cancer. Remodelling of CRLs is initiated by CSN-catalysed cleavage of the ubiquitin-like activator NEDD8 from CRLs. Here we describe CSN5i-3, a potent, selective and orally available inhibitor of CSN5, the proteolytic subunit of CSN. The compound traps CRLs in the neddylated state, which leads to inactivation of a subset of CRLs by inducing degradation of their substrate recognition module. CSN5i-3 differentially affects the viability of tumour cell lines and suppresses growth of a human xenograft in mice. Our results provide insights into how CSN regulates CRLs and suggest that CSN5 inhibition has potential for anti-tumour therapy.

Zhu Y, Qiu Z, Zhang X, et al.
Jab1 promotes glioma cell proliferation by regulating Siah1/β-catenin pathway.
J Neurooncol. 2017; 131(1):31-39 [PubMed] Related Publications
Jab1 (Jun activation domain-binding protein 1), also known as CSN5 (COP9 signalosome subunit 5), is frequently overexpressed in several cancer types. However, the biological functions and the molecular mechanisms of the Jab1 protein in human gliomas have not been investigated. In this study, we found that Jab1 protein was increasingly expressed in human glioma tissues comparing with normal brain tissues (Non-tumor). This suggested that Jab1 might be involved in the development of glioma. Thus, the role of Jab1 in glioma cell proliferation was investigated using Jab1 loss- and gain-of-function. The results showed that downregulation of Jab1 significantly inhibited glioma cell proliferation, while overexpression of Jab1 promoted it. Further investigation on molecular targets revealed that silencing of Jab1 obviously increased the p53 protein level thereby promoting the transcription of ubiquitin ligase Siah1 (Seven in absentia homolog 1), which aggravates the degradation of β-catenin. In contrast, overexpression of Jab1 had the opposite effect. Taken together, these findings suggest that Jab1 promotes glioma cell proliferation and increased expression of Jab1 in glioma patients may amplify β-catenin signaling to contribute to glioma cell proliferation.

Pan Y, Wang S, Su B, et al.
Stat3 contributes to cancer progression by regulating Jab1/Csn5 expression.
Oncogene. 2017; 36(8):1069-1079 [PubMed] Free Access to Full Article Related Publications
Our previous studies demonstrated that Jab1/Csn5 overexpression is correlated with low survival rates in cancer patients, including nasopharyngeal carcinoma (NPC), breast cancer and hepatocellular carcinoma, and contributes to NPC's resistance to radiotherapy and cisplatin by regulating DNA damage and repair pathways. However, the molecular mechanism by which Jab1/Csn5 expression is upregulated in NPCs has yet to be determined. In the present study, we identified the upstream regulator of Jab1/Csn5 expression and demonstrated its role in intrinsic resistance of NPC cells to treatment with cisplatin. Signal transducer and activator of transcription-3 (Stat3) expression correlates with and contributes to Jab1/Csn5 transcription. Consistently, silencing of Stat3 in tumors reduced Jab1/Csn5 expression, thereby sensitizing NPC cells to cisplatin-induced apoptosis both in vitro and in vivo. Mechanistically, Stat3 transcriptionally regulated Jab1/Csn5. Furthermore, high mRNA expression levels of Stat3 or Jab1 in colon cancer, breast cancer and glioblastoma are associated with significantly shorter survival times from the R2 online database. These findings identify a novel Stat3-Jab1/Csn5 signaling axis in cancer pathogenesis with therapeutic and prognostic relevance.

Zheng Y, Wang Q, Li T, et al.
Role of Myeloma-Derived MIF in Myeloma Cell Adhesion to Bone Marrow and Chemotherapy Response.
J Natl Cancer Inst. 2016; 108(11) [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Multiple myeloma (MM) remains an incurable cancer characterized by accumulation of malignant plasma cells in the bone marrow (BM). The mechanism underlying MM homing to BM is poorly elucidated.
METHODS: The clinical significance of migration inhibitory factor (MIF) expression was examined by analyzing six independent gene expression profile databases of primary MM cells using the Student's t test and Kaplan-Meier test. Enzyme-linked immunosorbent assay was used to examine MIF expression. In vivo bioluminescent imaging was used to determine MM cell localization and treatment efficacy in human MM xenograft mouse models, with three to four mice per group. MM cell attachment to BM stromal cells (BMSCs) was monitored by cell adhesion assay. MIF regulation of the expression of adhesion molecules was determined by chromatin immunoprecipitation (ChIP) assay. Statistical tests were two-sided.
RESULTS: High levels of MIF were detected in MM BM (MIF level in BM plasma: healthy = 10.72 ± 5.788 ng/mL, n = 5; MM = 1811 ± 248.7 ng/mL, n = 10; P < .001) and associated with poor survival of patients (Kaplan-Meier test for MM OS: 87 MIF(high) patients, 86 MIF(low) patients, P = .02). Knocking down MIF impaired MM cell adhesion to BMSCs in vitro and led to formation of extramedullary tumors in SCID mice. MIF acted through surface receptor CXCR4 and adaptor COPS5 to regulate the expression of adhesion molecules ALCAM, ITGAV, and ITGB5 on MM cells. More importantly, MIF-deficient MM cells were sensitive to chemotherapy in vitro when cocultured with BMSCs and in vivo. MIF inhibitor 4-IPP sensitized MM cells to chemotherapy.
CONCLUSIONS: MIF is an important player and a novel therapeutic target in MM. Inhibiting MIF activity will sensitize MM cells to chemotherapy.

Lu R, Hu X, Zhou J, et al.
COPS5 amplification and overexpression confers tamoxifen-resistance in ERα-positive breast cancer by degradation of NCoR.
Nat Commun. 2016; 7:12044 [PubMed] Free Access to Full Article Related Publications
Oestrogen receptor α (ERα) antagonists are used in endocrine therapies for ERα-positive (ERα+) breast cancer patients. Unfortunately the clinical benefit is limited due to intrinsic and acquired drug resistance. Here using integrated genomic and functional studies, we report that amplification and/or overexpression of COPS5 (CSN5/JAB1) confers resistance to tamoxifen. Amplification and overexpression of COPS5, a catalytic subunit of the COP9 complex, is present in about 9% of the ERα+ primary breast cancer and more frequently (86.7%, 26/30) in tamoxifen-refractory tumours. Overexpression of COPS5, through its isopeptidase activity, leads to ubiquitination and proteasome-mediated degradation of NCoR, a key corepressor for ERα and tamoxifen-mediated suppression of ERα target genes. Importantly, COPS5 overexpression causes tamoxifen-resistance in preclinical breast cancer models in vitro and in vivo. We also demonstrate that genetic inhibition of the isopeptidase activity of COPS5 is sufficient to re-sensitize the resistant breast cancer cells to tamoxifen-treatment, offering a potential therapeutic approach for endocrine-resistant breast cancer patients.

Wang S, Pan Y, Zhang R, et al.
Hsa-miR-24-3p increases nasopharyngeal carcinoma radiosensitivity by targeting both the 3'UTR and 5'UTR of Jab1/CSN5.
Oncogene. 2016; 35(47):6096-6108 [PubMed] Free Access to Full Article Related Publications
Radiotherapy is the standard therapy for nasopharyngeal carcinoma (NPC); however, radioresistance can hinder successful treatment. Here we report that microRNA (miR)-24 acts as a tumor suppressor and radiosensitizer in NPC cells and xenografts by targeting Jab1/CSN5. Although accumulating evidence has shown that Jab1/CSN5 functions as an oncoprotein in human cancers, its regulation through miRs has not been described. In this study, we found that Jab1/CSN5 functioned in a manner opposite to that of miR-24 in NPC tumorigenesis and radioresistance. We demonstrated that miR-24 inhibits Jab1/CSN5 translation via direct binding to its 3' untranslated region (3'UTR) and 5'UTR, leading to tumor growth inhibition, and sensitizes NPC tumors to radiation in vivo. Furthermore, silencing Jab1/CSN5 phenocopied the function of miR-24 in NPC cells after ionizing radiation treatment, resulting in increased apoptosis. Finally, we analyzed 50 paired samples of primary and matched recurrent NPC tissues from 25 NPC patients and subjected them to high-throughput genomic quantitative nuclease protection assay for quantifying simultaneously miR and mRNA levels. Our results showed that miR-24 levels were significantly decreased in recurrent NPC and that levels of Jab1/CSN5, as its target, were higher than those in primary NPC. Together, our findings indicate that miR-24 inhibits NPC tumor growth and increases NPC radiosensitivity by directly regulating Jab1/CSN5 and that both miR-24 and Jab1/CSN5 can serve as prognostic markers for NPC recurrence; this, in turn, may provide a promising therapeutic strategy for reversing NPC radioresistance.

Lee CC, Yang WH, Li CH, et al.
Ligand independent aryl hydrocarbon receptor inhibits lung cancer cell invasion by degradation of Smad4.
Cancer Lett. 2016; 376(2):211-7 [PubMed] Related Publications
The aryl hydrocarbon receptor (AhR) is a ligand-dependent-activated transcriptional factor that regulates the metabolism of xenobiotic and endogenous compounds. Although AhR plays a crucial role in air toxicant-induced carcinogenesis, AhR expression was shown to negatively regulate tumorigenesis. Therefore, in the present study, we investigated the effect of AhR without ligand treatment on cancer invasion in lung cancer cell lines. Lung cancer cells expressing lower levels of AhR showed higher invasion ability (H1299 cells) compared with cells expressing higher levels of AhR (A549 cells). Overexpression of AhR in H1299 cells inhibited the invasion ability. We found that vimentin expression was inhibited in AhR-overexpressing H1299 cells. Additionally, the expression of EMT-related transcriptional factors Snail and ID-1 decreased. Interestingly, we found that Smad4 degradation was induced in AhR-overexpressing H1299 cells. Our data showed that AhR could interact with Jun-activation domain binding protein (Jab1) and Smad4, which may cause degradation of Smad4 by the proteasome. Our data suggest that AhR affects the transforming growth factor-β signaling pathway by inducing Smad4 degradation by the proteasome and suppressing tumor metastasis via epithelial to mesenchymal transition reduction in lung cancer cells.

Choi HY, Park N, Na JB, et al.
Direct binding of Copine3 with Jab1 activates downstream ErbB2 signaling and motility in SKBr3 breast cancer cells.
Oncol Rep. 2016; 35(2):1147-52 [PubMed] Related Publications
Copine3, a known calcium-dependent membrane binding protein, contains two tandem C2 domains and an A domain. This protein has been shown to interact with receptor tyrosine kinase 2 (ErbB2), but little is known concerning the physiological function of Copine3. To better understand its cellular function, we carried out a yeast two-hybrid screen to find Copine3 binding partners. Among the identified proteins, Jun activation domain-binding protein 1 (Jab1) appears to directly interact with Copine3. This physical interaction between Copine3 and Jab1 as well as the specific binding regions of both proteins were confirmed in vitro and in vivo. Our results also demonstrate that binding of Copine3 to ErbB2 is increased when Jab1 is overexpressed in SKBr3 breast cancer cells. Furthermore, two ErbB2 downstream signaling proteins [phosphatidylinositol 3 (PI3) kinase and protein kinase B (AKT)] were also activated by Jab1 overexpression in these cells. These data suggest that binding of Copine3 and Jab1 regulates, at least to some extent, the ErbB2 signaling pathway. Moreover, overexpression of both Copine3 and Jab1 in SKBr3 cells effectively increased cellular migration. Collectively, our findings indicating that Jab1 enhances the ErbB2 binding ability of Copine3, further activating the ErbB2 signaling pathways involved in breast cancer cell pathogenesis.

Sang MM, Du WQ, Zhang RY, et al.
Suppression of CSN5 promotes the apoptosis of gastric cancer cells through regulating p53-related apoptotic pathways.
Bioorg Med Chem Lett. 2015; 25(15):2897-901 [PubMed] Related Publications
As one of the COP9 signalosome complex, CSN5 (also known as Jab1) has been confirmed overexpression in many human cancers and affected multiple pathways associating with cell proliferation and apoptosis. Correlation of CSN5 overexpression with poor prognosis for cancer provides evidence that it is involved in the tumorigenesis. However, little is known about the functional role and the underlying mechanism of CSN5 in gastric cancer progression. In the current study, the effect of CSN5 siRNA (small-interfering RNA) on the proliferation and apoptosis of human gastric cancer cells (AGS and MKN45) were examined. Our results showed that knockdown of CSN5 could inhibit proliferation and promote apoptosis of gastric cancer cells. Additionally, suppression of CSN5 expression contributed to the increased expression levels of p53 and Bax. In conclusion, CSN5 overexpression is significantly correlated with gastric cancer progression, and CSN5 could be a novel target in gastric cancer therapy.

Zhong G, Li H, Shan T, Zhang N
CSN5 silencing inhibits invasion and arrests cell cycle progression in human colorectal cancer SW480 and LS174T cells in vitro.
Int J Clin Exp Pathol. 2015; 8(3):2809-15 [PubMed] Free Access to Full Article Related Publications
CSN5 has been implicated as a candidate oncogene in human cancers by genetic linkage with activation of the poor-prognosis, wound response gene expression signature. The present study aimed to investigate the effect of silencing CSN5 on invasion and cell cycle progression of human colorectal cancer cells, and to determine the potential molecular mechanisms that are involved. The CSN5 specific small interfering RNA (shRNA) plasmid vector was constructed and then transfected into colorectal cancer cells. The expression of CSN5 mRNA and protein was detected by quantitative polymerase chain reaction and western blot analysis, respectively. Cell adhesion and invasion were analyzed using MTS and Transwell assays, respectively, and cell cycle progression was analyzed using flow cytometry. Adhesion, invasion, and cell cycle distribution were assessed following knockdown of CSN5 by RNA interference (RNAi). Furthermore, knockdown of CSN5 significantly inhibited cell adhesion and reduced the number of invasive cells, while increasing the percentage of cells in the G0/G1 phase (P<0.05). Western blot and real-time PCR analysis were used to identify differentially expressed invasion and cell cycle associated proteins in cells with silenced CSN5. The expression levels of CSN5 in colorectal cancer cells transfected with siRNA were decreased, leading to a significant inhibition of colorectal cancer cell adhesion and invasion. Western blot analysis revealed that silencing of CSN5 may inhibit CD44, matrix metalloproteinase (MMP) 2 and MMP 9 protein expression, significantly promoted cell cycle-related genes P53 and P27 expression. In addition, CSN5 silencing may induce activation PI3K/AKT signal regulated cell invasion. Moreover, CSN5 silencing inhibited the secretion of TGF-β, IL-1β and IL-6 and the transcriptional activity of transcription factor NF-κB and Twist in human colorectal cancer cells. Taken together, down regulation of CSN5 may inhibit invasion and arrests cell cycle progression in colorectal cancer via PI3K/AKT/NF-κB signal pathway, which indicates that there is a potential of targeting CSN5 as a novel gene therapy approach for the treatment of colorectal cancer.

Wang H, Qian Z, Zhao H, et al.
CSN5 silencing reverses sorafenib resistance of human hepatocellular carcinoma HepG2 cells.
Mol Med Rep. 2015; 12(3):3902-3908 [PubMed] Related Publications
Hepatocellular carcinoma (HCC) is one of the most common tumor types, and is the third leading cause of cancer mortalities worldwide. A large number of patients with HCC are diagnosed at a late stage when the curative treatment of surgical resection and liver transplantation are no longer applicable. Sorafenib has been proved to improve overall survival in advanced HCC; however, drug resistance is common. The present study reported that the CSN5 is correlated with sorafenib resistance of the HCC cell line HepG2/S. Following silencing of CSN5, resistance to sorafenib was reversed, and multi-drug‑resistance proteins, including as adenosine triphosphate binding cassette (ABC)B1, ABCC2 and ABCG2 as well as CDK6, cyclin D1 and B‑cell lymphoma 2 were downregulated. In addition, it was demonstrated that the integrin beta-1, transforming growth factor‑β1 and nuclear factor‑κB pathways were modified by CSN5.

Okoh VO, Garba NA, Penney RB, et al.
Redox signalling to nuclear regulatory proteins by reactive oxygen species contributes to oestrogen-induced growth of breast cancer cells.
Br J Cancer. 2015; 112(10):1687-702 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: 17β-Oestradiol (E2)-induced reactive oxygen species (ROS) have been implicated in regulating the growth of breast cancer cells. However, the underlying mechanism of this is not clear. Here we show how ROS through a novel redox signalling pathway involving nuclear respiratory factor-1 (NRF-1) and p27 contribute to E2-induced growth of MCF-7 breast cancer cells.
METHODS: Chromatin immunoprecipitation, qPCR, mass spectrometry, redox western blot, colony formation, cell proliferation, ROS assay, and immunofluorescence microscopy were used to study the role of NRF-1.
RESULTS: The major novel finding of this study is the demonstration of oxidative modification of phosphatases PTEN and CDC25A by E2-generated ROS along with the subsequent activation of AKT and ERK pathways that culminated in the activation of NRF-1 leading to the upregulation of cell cycle genes. 17β-Oestradiol-induced ROS by influencing nuclear proteins p27 and Jab1 also contributed to the growth of MCF-7 cells.
CONCLUSIONS: Taken together, our results present evidence in the support of E2-induced ROS-mediated AKT signalling leading to the activation of NRF-1-regulated cell cycle genes as well as the impairment of p27 activity, which is presumably necessary for the growth of MCF-7 cells. These observations are important because they provide a new paradigm by which oestrogen may contribute to the growth of breast cancer.

Zhang ZY, Xu RQ, Guo TJ, et al.
Identification of differently expressed genes in leukemia using multiple microarray datasets.
Genet Mol Res. 2014; 13(4):10482-9 [PubMed] Related Publications
The purpose of this study was to identify differentially expressed genes and analyze biological processes related to leukemia. A meta-analysis was performed using the Rank Product package of Gene Expression Omnibus datasets for leukemia. Next, Gene Ontology-enrichment analysis and pathway analysis were performed using the Gene Ontology website and Kyoto Encyclopedia of Genes and Genomes. A protein-protein interaction network was constructed using the Cytoscape software. Using the Rank Product package for leukemia, we identified a total of 1294 differentially expressed genes, 357 of which were not involved in individual differentially expressed genes. Gene Ontology-enrichment analyses showed that these 357 genes were enriched in biological processes such as mRNA metabolism, RNA splicing, and mRNA processing. Pathway-enrichment analysis showed that the genes were involved in the intestinal immune network for IgA production, endocytosis, and the mitogen-activated protein kinase signaling pathway. The protein-protein interaction network indicated that HRAS, CD44, STAT1, SMAD2, and COPS5 were important in many interactions. Our study revealed genes that were consistently differentially expressed in leukemia, as well as the biological pathways and protein-protein interaction network associated with these genes.

Jumpertz S, Hennes T, Asare Y, et al.
The β-catenin E3 ubiquitin ligase SIAH-1 is regulated by CSN5/JAB1 in CRC cells.
Cell Signal. 2014; 26(9):2051-9 [PubMed] Related Publications
COP9 signalosome subunit 5 (CSN5) plays a decisive role in cellular processes such as cell cycle regulation and apoptosis via promoting protein degradation, gene transcription, and nuclear export. CSN5 regulates cullin-RING-E3 ligase (CRL) activity through its deNEDDylase function. It is overexpressed in several tumor entities, but its role in colorectal cancer (CRC) is poorly understood. Wnt/β-catenin signaling is aberrant in most CRC cells, resulting in increased levels of oncogenic β-catenin and thus tumor progression. Under physiological conditions, β-catenin levels are tightly regulated by continuous proteasomal degradation. We recently showed that knockdown of CSN5 in model and CRC cells results in decreased (phospho)-β-catenin levels. Reduced β-catenin levels were associated with an attenuated proliferation rate of different CRC cell types after CSN5 knockdown. The canonical Wnt pathway involves degradation of β-catenin by a β-TrCP1-containing E3 ligase, but is mostly non-functional in CRC cells. We thus hypothesized that alternative β-catenin degradation mediated by SIAH-1 (seven in absentia homolog-1), is responsible for the effect of CSN5 on β-catenin signaling in CRC cells. We found that SIAH-1 plays an essential role in β-catenin degradation in HCT116 CRC cells and that CSN5 affects β-catenin target gene expression in these cells. Of note, CSN5 affected SIAH-1 mRNA and SIAH-1 protein levels. Moreover, β-catenin and SIAH-1 form protein complexes with CSN5 in HCT116 cells. Lastly, we demonstrate that CSN5 promotes SIAH-1 degradation in HCT116 and SW480 cells and that this is associated with its deNEDDylase activity. In conclusion, we have identified a CSN5/β-catenin/SIAH-1 interaction network that might control β-catenin degradation in CRC cells.

Bhansali M, Shemshedini L
COP9 subunits 4 and 5 target soluble guanylyl cyclase α1 and p53 in prostate cancer cells.
Mol Endocrinol. 2014; 28(6):834-45 [PubMed] Free Access to Full Article Related Publications
Our laboratory previously has identified soluble guanylyl cyclase α1 (sGCα1) as a direct target of androgen receptor and essential for prostate cancer cell growth via a pathway independent of nitric oxide (NO) signaling. We identified the COP9 signalosome subunit 4 (CSN4) as a novel interacting partner for sGCα1. Importantly, the CSN4-sGCα1 interaction inhibits sGCα1 proteasomal degradation. Consistent with this, disruption of CSN4 led to a significant decrease in prostate cancer cell proliferation, which was significantly but not completely rescued by sGCα1 overexpression, opening the possibility of an additional target of CSN4. Interestingly, immunoprecipitation experiments showed that p53 is found in the CSN4-sGCα1 cytoplasmic protein complex. However, in contrast to sGCα1, p53 protein stability was compromised by CSN4, leading to prostate cancer cell survival and proliferation. Interestingly, we observed that CSN4 was overexpressed in prostate tumors, and its protein level correlates directly with sGCα1 and inversely with p53 proteins, mimicking what was observed in prostate cancer cells. Our data further showed that CSN4 silencing decreased CSN5 protein levels and suggest that the CSN4 effects on sGCα1 and p53 proteins are mediated by CSN5. Lastly, our study showed that caseine kinase-2 (CK2) was involved in regulating p53 and sGCα1 protein stability as determined by both disruption of CK2 expression and inhibition of its kinase activity. Collectively, our study has identified a novel endogenous CSN4-CSN5-CK2 complex with sGCα1and p53 that oppositely controls the stability of these 2 proteins and provides prostate cancer cells an important mechanism for survival and proliferation.

Nagarajan A, Dogra SK, Liu AY, et al.
PEA15 regulates the DNA damage-induced cell cycle checkpoint and oncogene-directed transformation.
Mol Cell Biol. 2014; 34(12):2264-82 [PubMed] Free Access to Full Article Related Publications
Regulation of the DNA damage response and cell cycle progression is critical for maintaining genome integrity. Here, we report that in response to DNA damage, COPS5 deubiquitinates and stabilizes PEA15 in an ATM kinase-dependent manner. PEA15 expression oscillates throughout the cell cycle, and the loss of PEA15 accelerates cell cycle progression by activating CDK6 expression via the c-JUN transcription factor. Cells lacking PEA15 exhibit a DNA damage-induced G2/M checkpoint defect due to increased CDC25C activity and, consequentially, higher cyclin-dependent kinase 1 (CDK1)/cyclin B activity, and accordingly they have an increased rate of spontaneous mutagenesis. We find that oncogenic RAS inhibits PEA15 expression and that ectopic PEA15 expression blocks RAS-mediated transformation, which can be partially rescued by ectopic expression of CDK6. Finally, we show that PEA15 expression is downregulated in colon, breast, and lung cancer samples. Collectively, our results demonstrate that tumor suppressor PEA15 is a regulator of genome integrity and is an integral component of the DNA damage response pathway that regulates cell cycle progression, the DNA-damage-induced G2/M checkpoint, and cellular transformation.

Liu N, Liu X, Zhou N, et al.
Gene expression profiling and bioinformatics analysis of gastric carcinoma.
Exp Mol Pathol. 2014; 96(3):361-6 [PubMed] Related Publications
Gastric cancer remains one of the major health problems worldwide, and it is one of the most common cancers and the leading cause of cancer-related deaths in China. This study was to analyze the expression profiles of genes in gastric carcinoma, and predict potential regulating factors. The gene expression profile data GSE13911 was downloaded from Gene Expression Omnibus and the differentially expressed genes (DEGs) were identified by t-test. Gene modules were constructed using hierarchical clustering in R based on average linkage and Pearson's correlation coefficient and functional analysis for these genes were performed with DAVID. Genes in each module with Pearson's correlation coefficient >0.3 were obtained to construct co-expression network. Protein-protein interactions (PPIs) were identified by comparing protein-protein interaction (PPI) network with co-expression networks. In addition, the potential regulatory microRNAs and the transcription factors for each module were screened out. In this study, six modules associated with protein degradation, cell cycle, protein trafficking and immunoreaction were identified. COPS5 (COP9 Subunit 5) was the core protein in the largest PPI network of module 1. The transcription factors MYC and MAZ (Myc-associated zinc-finger protein) were enriched in module 1. A total of 9 microRNA-target bi-clusters were identified and module 1 enriched 20 genes targeting to miR-17-92 gene cluster(miR-17/20ab)and miR-106b-25 gene cluster (miR-106b/93). In conclusion, we constructed 6 gene modules and screened out some genes, transcriptional factors and microRNAs that may be used as potential molecular biomarkers for gastric carcinoma.

Wu XQ, Huang C, He X, et al.
Feedback regulation of telomerase reverse transcriptase: new insight into the evolving field of telomerase in cancer.
Cell Signal. 2013; 25(12):2462-8 [PubMed] Related Publications
Telomerase reverse transcriptase (TERT) is the catalytic component of telomerase, especially the rate-limiting determinant of telomerase activity. So far, TERT has been reported to be over-expressed in more than 90% of cancers, thereby playing a critical role in sustained proliferation and survival potentials of various cancer cells. Over the past decade, a comprehensive network of transcription factors has been shown to be involved in the regulation of TERT. Furthermore, accumulating evidence has suggested that TERT could modulate the expression of numerous genes involved in diverse group of cellular processes, including cell cycle regulation and cellular signaling. Therefore, it indicates that TERT is both an effector and a regulator in carcinoma. However, the mechanisms of the interaction between TERT and its target genes are still not fully understood. Thus, it is necessary to consolidate and summarize recent developments of the cross-talk between TERT and related genes in cancer cells or other cells with cancer cell characteristics, and elucidate these relevant mechanisms. In this review, we focus on various signaling pathways and genes that participate in the feedback regulation of TERT and the underlying feedback loop mechanism of TERT, further providing new insights into non-telomeric functions of telomerase and potentially to be used as a novel therapeutic target for cancer.

Nishimoto A, Kugimiya N, Hosoyama T, et al.
JAB1 regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cells.
Biochem Biophys Res Commun. 2013; 438(3):513-8 [PubMed] Related Publications
Recent studies have revealed that unphosphorylated STAT3 forms a dimer, translocates to the nucleus, binds to the STAT3 binding site, and activates the transcription of STAT3 target genes, thereby playing an important role in oncogenesis in addition to phosphorylated STAT3. Among signaling steps of unphosphorylated STAT3, nuclear translocation and target DNA-binding are the critical steps for its activation. Therefore, elucidating the regulatory mechanism of these signaling steps of unphosphorylated STAT3 is a potential step in the discovery of a novel cancer drug. However, the mechanism of unphosphorylated STAT3 binding to the promoter of target genes remains unclear. In this study, we focused on Jun activation domain-binding protein 1 (JAB1) as a candidate protein that regulates unphosphorylated STAT3 DNA-binding activity. Initially, we observed that both unphosphorylated STAT3 and JAB1 existed in the nucleus of human colon cancer cell line COLO205 at the basal state (no cytokine stimulation). On the other hand, phosphorylated STAT3 did not exist in the nucleus of COLO205 cells at the basal state. Immunoprecipitation using nuclear extract of COLO205 cells revealed that JAB1 interacted with unphosphorylated STAT3. To investigate the effect of JAB1 on unphosphorylated STAT3 activity, RNAi studies were performed. Although JAB1 knockdown tended to increase nuclear STAT3 expression, it significantly decreased unphosphorylated STAT3 DNA-binding activity. Subsequently, JAB1 knockdown significantly decreased the expression levels of MDR1, NANOG, and VEGF, which are STAT3 target genes. Furthermore, the expression level of nuclear JAB1, but not nuclear STAT3, correlated with unphosphorylated STAT3 DNA-binding activity between COLO205 and LoVo cells. Taken together, these results suggest that nuclear JAB1 positively regulates unphosphorylated STAT3 DNA-binding activity through protein-protein interaction in human colon cancer cell line COLO205.

Tsujimoto I, Yoshida A, Yoneda-Kato N, Kato JY
Depletion of CSN5 inhibits Ras-mediated tumorigenesis by inducing premature senescence in p53-null cells.
FEBS Lett. 2012; 586(24):4326-31 [PubMed] Related Publications
The mammalian COP9 signalosome (CSN) complex is involved in cell transformation, but its molecular mechanism remains undetermined. Here we show that disruption of the fifth component (CSN5) prevented the formation of tumors by p53-null cells transformed with an active form of Ras in subcutaneously injected mice. Depletion of CSN5 suppressed cell proliferation, and induced premature senescence characterized by upregulation of senescence-associated-β-galactosidase activity and increased expression of CDK inhibitors. CSN5-depleted cells exhibited enhanced activation of the PI3 kinase-Akt pathway, and chemical inhibition of this pathway reduced the level of senescence. Thus, CSN5 is suggested to be a novel target in cancer therapy and for drugs against tumor cells harboring mutated p53.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. COPS5, Cancer Genetics Web: http://www.cancer-genetics.org/COPS5.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 31 August, 2019     Cancer Genetics Web, Established 1999