CCNB1

Gene Summary

Gene:CCNB1; cyclin B1
Aliases: CCNB
Location:5q13.2
Summary:The protein encoded by this gene is a regulatory protein involved in mitosis. The gene product complexes with p34(cdc2) to form the maturation-promoting factor (MPF). The encoded protein is necessary for proper control of the G2/M transition phase of the cell cycle. [provided by RefSeq, Aug 2017]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:G2/mitotic-specific cyclin-B1
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (47)
Pathways:What pathways are this gene/protein implicaed in?
Show (9)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: CCNB1 (cancer-related)

Yang Q, Wang R, Wei B, et al.
Gene and microRNA Signatures Are Associated with the Development and Survival of Glioblastoma Patients.
DNA Cell Biol. 2019; 38(7):688-699 [PubMed] Related Publications
This study was aimed to identify hub genes associated with the development of glioblastoma (GBM) by conducting a bioinformatic analysis. The raw gene expression data were downloaded from the Gene Expression Omnibus database and The Cancer Genome Atlas project. After the differentially expressed genes (DEGs) were identified, the functional enrichment analysis of DEGs was conducted. Subsequently, the protein-protein interaction (PPI) network, molecular complex detection clusters, and transcriptional factor (TF)-miRNA-target regulatory network were constructed, respectively. Furthermore, the survival analysis of prognostic outcomes and genes was analyzed. In addition, the expression of key genes was validated by quantitative real-time PCR (qRT-PCR) analysis. A total of 884 DEGs, including 418 upregulated and downregulated genes, were identified between GBM and normal samples. The PPI network comprised a set of 3418 pairs involving 751 nodes, and

Liu C, Jiang YH, Zhao ZL, et al.
Knockdown of Histone Methyltransferase WHSC1 Induces Apoptosis and Inhibits Cell Proliferation and Tumorigenesis in Salivary Adenoid Cystic Carcinoma.
Anticancer Res. 2019; 39(6):2729-2737 [PubMed] Related Publications
BACKGROUND/AIM: Salivary adenoid cystic carcinoma (SACC) is the most common malignancy of the salivary gland with a poor prognosis and survival. The present study aimed to investigate the role of histone methyltransferase WHSC1 in SACC.
MATERIALS AND METHODS: Human SACC specimens were evaluated for WHSC1 expression by RT-PCR and immunohistochemistry. The effects of WHSC1 knockdown on SACC cells proliferation, cell cycle, clone and tumorsphere formation, and apoptosis as well as on the expression of related genes were examined. A xenograft mouse model of SACC was used to evaluate the in vivo effects of WHSC1 knockdown on SACC tumorigenesis.
RESULTS: WHSC1 expression was up-regulated in human SACC tissues (p<0.01). WHSC1 knockdown in SACC cells significantly inhibited cell proliferation, clone and tumorsphere formation (p<0.05). Cell distribution at the S and G
CONCLUSION: Knockdown of WHSC1 inhibited cell proliferation, induced apoptosis and affected tumorigenesis in SACC.

Heo SK, Noh EK, Jeong YK, et al.
Radotinib inhibits mitosis entry in acute myeloid leukemia cells via suppression of Aurora kinase A expression.
Tumour Biol. 2019; 41(5):1010428319848612 [PubMed] Related Publications
Aurora kinases play critical roles in regulating several processes pivotal for mitosis. Radotinib, which is approved in South Korea as a second-line treatment for chronic myeloid leukemia, inhibits the tyrosine kinase BCR-ABL and platelet-derived growth factor receptor. However, the effects of radotinib on Aurora kinase expression in acute myeloid leukemia are not well studied. Interestingly, the cytotoxicity of acute myeloid leukemia cells was increased by radotinib treatment. Radotinib significantly decreased the expression of cyclin-dependent kinase 1 and cyclin B1, the key regulators of G2/M phase, and inhibited the expression of Aurora kinase A and Aurora kinase B in acute myeloid leukemia cells. In addition, radotinib decreased the expression and binding between p-Aurora kinase A and TPX2, which are required for spindle assembly. Furthermore, it reduced Aurora kinase A and polo-like kinase 1 phosphorylation and suppressed the expression of α-, β-, and γ-tubulin in acute myeloid leukemia cells. Furthermore, radotinib significantly suppressed the key regulators of G2/M phase including cyclin B1 and Aurora kinase A in a xenograft animal model. Therefore, our results suggest that radotinib can abrogate acute myeloid leukemia cell growth both in vitro and in vivo and may serve as a candidate agent or a chemosensitizer for treating acute myeloid leukemia.

Grodzik M, Szczepaniak J, Strojny-Cieslak B, et al.
Diamond Nanoparticles Downregulate Expression of
Molecules. 2019; 24(8) [PubMed] Free Access to Full Article Related Publications
Our previous studies have shown that diamond nanoparticles (NDs) exhibited antiangiogenic and proapoptotic properties in vitro in glioblastoma multiforme (GBM) cells and in tumors in vivo. Moreover, NDs inhibited adhesion, leading to the suppression of migration and invasion of GBM. In the present study, we hypothesized that the NDs might also inhibit proliferation and cell cycle in glioma cells. Experiments were performed in vitro with the U87 and U118 lines of GBM cells, and for comparison, the Hs5 line of stromal cells (normal cells) after 24 h and 72 h of treatment. The analyses included cell morphology, cell death, viability, and cell cycle analysis, double timing assay, and gene expression (

Dong F, Yang Q, Wu Z, et al.
Identification of survival-related predictors in hepatocellular carcinoma through integrated genomic, transcriptomic, and proteomic analyses.
Biomed Pharmacother. 2019; 114:108856 [PubMed] Related Publications
Patient survival time generally reflects the tumor progression and represents a key clinical parameter. In this study, we aimed to comprehensively characterize the prognosis-associated molecular alterations in hepatocellular carcinoma (HCC). In this study, copy-number changes, gene mutations, mRNA expression, and reverse phase protein arrays data in HCC samples profiled by The Cancer Genome Atlas (TCGA) were obtained. Tumors were then stratified into two groups based on the clinical outcome and identified genomic, transcriptomic, and proteomic traits associated to HCC prognosis. We found that several copy number amplifications and deletions can discriminate HCC patients with poor prognosis from those with better prognosis. Mutated DNAH8 showed a worse prognosis-specific pattern and correlated with a reduced disease-free survival in HCC. By integrating RNA sequencing data, we found that HCC samples with poor prognosis are consistently associated with the up-regulation of cell cycle process, such as chromosome separation, DNA replication, cytokinesis, and etc. At the proteomic level, seven proteins were significantly enriched in samples with poor prognosis, including acetylated α-Tubulin, p62-LCK-ligand, ARID1 A, MSH6, B-Raf, Cyclin B1, and PEA15. Acetylated α-Tubulin was frequently expressed in HCC tissues and acted as a promising prognostic factor for HCC. These alterations lay a foundation for developing relevant therapeutic strategies and improve our knowledge of the pathogenesis of HCC.

Liu S, Han Z, Trivett AL, et al.
Cryptotanshinone has curative dual anti-proliferative and immunotherapeutic effects on mouse Lewis lung carcinoma.
Cancer Immunol Immunother. 2019; 68(7):1059-1071 [PubMed] Free Access to Full Article Related Publications
Lung cancer is currently the leading cause of cancer-related mortality with very limited effective therapy. Screening of a variety of traditional Chinese medicines (TCMs) for their capacity to inhibit the proliferation of human lung cancer A549 cells and to induce the in vitro maturation of human DCs led to the identification of cryptotanshinone (CT), a compound purified from the TCM Salvia miltiorrhiza Bunge. Here, CT was shown to inhibit the proliferation of mouse Lewis lung carcinoma (LLC) cells by upregulating p53, downregulating cyclin B1 and Cdc2, and, consequently, inducing G2/M cell-cycle arrest of LLC cells. In addition, CT promoted maturation of mouse and human DCs with upregulation of costimulatory and MHC molecules and stimulated DCs to produce TNFα, IL-1β, and IL-12p70, but not IL-10 in vitro. CT-induced maturation of DCs depended on MyD88 and also involved the activation of NF-κB, p38, and JNK. CT was effective in the treatment of LLC tumors and, when used in combination with low doses of anti-PD-L1, cured LLC-bearing mice with the induction of subsequent anti-LLC long-term specific immunity. CT treatment promoted T-cell infiltration and elevated the expression of genes typical of Th1 polarization in LLC tumor tissue. The therapeutic effect of CT and low doses of anti-PD-L1 was reduced by depletion of CD4 and CD8 T cells. This paper provides the first report that CT induces immunological antitumor activities and may provide a new promising antitumor immunotherapeutic.

Rutz J, Maxeiner S, Juengel E, et al.
Growth and Proliferation of Renal Cell Carcinoma Cells Is Blocked by Low Curcumin Concentrations Combined with Visible Light Irradiation.
Int J Mol Sci. 2019; 20(6) [PubMed] Free Access to Full Article Related Publications
The anti-cancer properties of curcumin in vitro have been documented. However, its clinical use is limited due to rapid metabolization. Since irradiation of curcumin has been found to increase its anti-cancer effect on several tumor types, this investigation was designed to determine whether irradiation with visible light may enhance the anti-tumor effects of low-dosed curcumin on renal cell carcinoma (RCC) cell growth and proliferation. A498, Caki1, and KTCTL-26 cells were incubated with curcumin (0.1⁻0.4 µg/mL) and irradiated with 1.65 J/cm² visible light for 5 min. Controls were exposed to curcumin or light alone or remained untreated. Curcumin plus light, but not curcumin or light exposure alone altered growth, proliferation, and apoptosis of all three RCC tumor cell lines. Cells were arrested in the G0/G1 phase of the cell cycle. Phosphorylated (p) CDK1 and pCDK2, along with their counter-receptors Cyclin B and A decreased, whereas p27 increased. Akt-mTOR-signaling was suppressed, the pro-apoptotic protein Bcl-2 became elevated, and the anti-apoptotic protein Bax diminished. H3 acetylation was elevated when cells were treated with curcumin plus light, pointing to an epigenetic mechanism. The present findings substantiate the potential of combining low curcumin concentrations and light as a new therapeutic concept to increase the efficacy of curcumin in RCC.

Raab M, Sanhaji M, Zhou S, et al.
Blocking Mitotic Exit of Ovarian Cancer Cells by Pharmaceutical Inhibition of the Anaphase-Promoting Complex Reduces Chromosomal Instability.
Neoplasia. 2019; 21(4):363-375 [PubMed] Free Access to Full Article Related Publications
Paclitaxel is a frontline drug for the treatment of epithelial ovarian cancer (EOC). However, following paclitaxel-platinum based chemotherapy, tumor recurrence occurs in most ovarian cancer patients. Chromosomal instability (CIN) is a hallmark of cancer and represents genetic variation fueling tumor adaptation to cytotoxic effects of anticancer drugs. In this study, our Kaplan-Meier analysis including 263 ovarian cancer patients (stages I/II) revealed that high Polo-like kinase (PLK) 1 expression correlates with bad prognosis. To evaluate the role of PLK1 as potential cancer target within a combinatorial trial, we induced strong mitotic arrest in ovarian cancer cell lines by synergistically co-targeting microtubules (paclitaxel) and PLK1 (BI6727) followed by pharmaceutical inhibition of the Anaphase-Promoting Complex (APC/C) using proTAME. In short- and long-term experiments, this triple treatment strongly activated apoptosis in cell lines and primary ovarian cells derived from cancer patients. Mechanistically, BI6727/paclitaxel/proTAME stabilize Cyclin B1 and trigger mitotic arrest, which initiates mitochondrial apoptosis by inactivation of antiapoptotic BCL-2 family proteins, followed by activation of caspase-dependent effector pathways. This triple treatment prevented endoreduplication and reduced CIN, two mechanisms that are associated with aggressive tumors and the acquisition of drug resistance. This "two-punch strategy" (strong mitotic arrest followed by blocking mitotic exit) has important implications for developing paclitaxel-based combinatorial treatments in ovarian cancer.

Gao Z, Man X, Li Z, et al.
Expression profiles analysis identifies the values of carcinogenesis and the prognostic prediction of three genes in adrenocortical carcinoma.
Oncol Rep. 2019; 41(4):2440-2452 [PubMed] Related Publications
Adrenocortical carcinoma (ACC) is a rare disease associated with a poor prognosis. Furthermore, the underlying molecular mechanism of carcinogenesis is poorly understood, and prognostic prediction of ACC has low accuracy. In the present study, a bioinformatics approach was used to investigate the molecular mechanisms and prognosis of ACC. Samples of adrenal tumors were collected from patients undergoing adrenalectomy at the Department of Urology, the First Hospital of China Medical University. The analyzed gene datasets were downloaded from the Gene Expression Omnibus and The Cancer Genome Atlas (TCGA) database. Following this, the differentially expressed genes (DEGs) were included in Gene Ontology enrichment, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway, protein‑protein interaction network and survival analyses. MTT colorimetric assays, colony formation assays and 5‑ethynyl‑20‑deoxyuridine incorporation assays were also conducted to evaluate ACC cell proliferation. The identified DEGs included 20 downregulated genes and 51 upregulated genes, which were highly associated with the cell cycle, organelle fission, chromosome segregation, cell division and spindle stability. The top 14 hub genes were subsequently confirmed by reverse transcription‑quantitative polymerase chain reaction in ACC and adrenocortical adenoma samples. It was identified that the nuclear division cycle 80, cyclin B2 and topoisomerase 2‑α may serve important roles in adrenocortical tumor development. Furthermore, these three genes predicted overall survival and recurrence‑free survival in patients with ACC from the TCGA cohort. The findings identified three novel genes that have important roles in carcinogenesis and in the prognostic prediction of ACC.

Suh SS, Hong JM, Kim EJ, et al.
Antarctic freshwater microalga,
Int J Med Sci. 2019; 16(2):189-197 [PubMed] Free Access to Full Article Related Publications
Inflammation triggered by the innate immune system is a strategy to protect organisms from the risk of environmental infection. However, it has recently become clear that inflammation can cause a variety of human diseases, including cancer. In this study, we investigated the effects of an ethanol extract of the Antarctic freshwater microalgae,

Wu M, Liu Z, Zhang A, Li N
Identification of key genes and pathways in hepatocellular carcinoma: A preliminary bioinformatics analysis.
Medicine (Baltimore). 2019; 98(5):e14287 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most prevalent cancers worldwide. However, the precise mechanisms of the development and progression of HCC remain unclear. The present study attempted to identify and functionally analyze the differentially expressed genes between HCC and cirrhotic tissues by using comprehensive bioinformatics analyses.
METHODS: The GSE63898 gene expression profile was downloaded from the Gene Expression Omnibus (GEO) and analyzed using the online tool GEO2R to identify differentially expressed genes (DEGs). Gene ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis of the DEGs were performed in DAVID. The STRING database was used to evaluate the interactions of DEGs and to construct a protein-protein interaction (PPI) network using Cytoscape software. Hub genes were selected using the cytoHubba plugin and were validated with the cBioPortal database.
RESULTS: A total of 301 DEGs were identified between HCC and cirrhotic tissues. The GO analysis results showed that these DEGs were significantly enriched in certain biological processes including negative regulation of growth and cell chemotaxis. Several significant pathways, including the p53 signaling pathway, were identified as being closely associated with these DEGs. The top 12 hub genes were screened and included TTK, NCAPG, TOP2A, CCNB1, CDK1, PRC1, RRM2, UBE2C, ZWINT, CDKN3, AURKA, and RACGAP1. The cBioPortal analysis found that alterations in hub genes could result in significantly reduced disease-free survival in HCC.
CONCLUSION: The present study identified a series of key genes and pathways that may be involved in the tumorigenicity and progression of HCC, providing a new understanding of the underlying molecular mechanisms of carcinogenesis in HCC.

Shaabanpour Aghamaleki F, Mollashahi B, Aghamohammadi N, et al.
Bioinformatics Analysis of Key Genes and Pathways for Medulloblastoma as a Therapeutic Target
Asian Pac J Cancer Prev. 2019; 20(1):221-227 [PubMed] Free Access to Full Article Related Publications
Introduction: One of the major challenges in cancer treatment is the lack of specific and accurate treatment in cancer. Data analysis can help to understand the underlying molecular mechanism that leads to better treatment. Increasing availability and reliability of DNA microarray data leads to increase the use of these data in a variety of cancers. This study aimed at applying and evaluating microarray data analyzing, identification of important pathways and gene network for medulloblastoma patients to improve treatment approaches especially target therapy. Methods: In the current study, Microarray gene expression data (GSE50161) were extracted from Geo datasets and then analyzed by the affylmGUI package to predict and investigate upregulated and downregulated genes in medulloblastoma. Then, the important pathways were determined by using software and gene enrichment analyses. Pathways visualization and network analyses were performed by Cytoscape. Results: A total number of 249 differentially expressed genes (DEGs) were identified in medulloblastoma compared to normal samples. Cell cycle, p53, and FoxO signaling pathways were indicated in medulloblastoma, and CDK1, CCNB1, CDK2, and WEE1 were identified as some of the important genes in the medulloblastoma. Conclusion: Identification of critical and specific pathway in any disease, in our case medulloblastoma, can lead us to better clinical management and accurate treatment and target therapy.

Ramírez-Rivera S, Bernal G
Music Is Capable of Inducing Changes in Gene Expression in Gastric Cancer Cells.
J Gastrointest Cancer. 2019; 50(1):175-180 [PubMed] Related Publications
PURPOSE: Music has recognized beneficial effects on cancer patients; however, very little is known about the molecular processes which produce these benefits. The aim of this work was to evaluate the effect of music on proliferation and gene expression in gastric cancer cells.
METHODS: AGS gastric cancer cells were exposed to metal and classical music, and subsequently cell proliferation and expression of genes associated with apoptosis and cell-cycle control were evaluated.
RESULTS: Proliferation of AGS cells increased when exposed to metal music, but not when exposed to classical music. Gene expression of caspase-3 and 8 and cyclin B1 increased in response to both musical genres; classical music repressed the expression of p53, and metal music repressed the expression of PUMA.
CONCLUSIONS: This is the first study to demonstrate music as a modulator of gene expression in a cancer cell line. Additional experiments are required to better understand the mechanisms of how different musical genres can induce changes in gene expression.

Chen ZX, Zou XP, Yan HQ, et al.
Identification of putative drugs for gastric adenocarcinoma utilizing differentially expressed genes and connectivity map.
Mol Med Rep. 2019; 19(2):1004-1015 [PubMed] Free Access to Full Article Related Publications
Gastric adenocarcinoma (GAC) is a challenging disease with dim prognosis even after surgery; hence, novel treatments for GAC are in urgent need. The aim of the present study was to explore new potential compounds interfering with the key pathways related to GAC progression. The differentially expressed genes (DEGs) between GAC and adjacent tissues were identified from The Cancer Genome Atlas (TCGA) and Genotype‑Tissue Expression (GTEx) database. Connectivity Map (CMap) was performed to screen candidate compounds for treating GAC. Subsequently, pathways affected by compounds were overlapped with those enriched by the DEGs to further identify compounds which had anti‑GAC potential. A total of 843 DEGs of GAC were identified. Via Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, 13 pathways were significantly enriched. Moreover, 78 compounds with markedly negative correlations with DEGs were revealed in CMap database (P<0.05 and Enrichment <0). Subpathways of cell cycle and p53 signaling pathways, and core genes of these compounds, cyclin B1 (CCNB1) and CDC6, were identified. This study further revealed seven compounds that may be effective against GAC; in particular methylbenzethonium chloride and alexidine have never yet been reported for GAC treatment. In brief, the candidate drugs identified in this study may provide new options to improve the treatment of patients with GAC. However, the biological effects of these drugs need further investigation.

Liu W, Ouyang S, Zhou Z, et al.
Identification of genes associated with cancer progression and prognosis in lung adenocarcinoma: Analyses based on microarray from Oncomine and The Cancer Genome Atlas databases.
Mol Genet Genomic Med. 2019; 7(2):e00528 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Lung adenocarcinoma (LUAD) accounts for approximately 40% of all lung cancer patients. There is an urgent need to understand the mechanisms of cancer progression in LUAD and to identify useful biomarkers to predict prognosis.
METHODS: In this study, Oncomine database was used to identify potential genes contributed to cancer progression. Bioinformatics analysis including pathway enrichment and text mining was used to explain the potential roles of identified genes in LUAD. The Cancer Genome Atlas database was used to analyze the association of gene expression with survival result.
RESULTS: Our results indicated that 80 genes were significantly dysregulated in LUAD according to four microarrays covering 356 cases of LUAD and 164 cases of normal lung tissues. Twenty genes were consistently and stably dysregulated by more than twofold. Ten of 20 genes had a relationship with overall survival or disease-free survival in a cohort of 516 LUAD patients, and 19 genes were associated with tumor stage, gender, age, lymph node, or smoking. Low expression of AGER and high expression of CCNB1 were specifically associated with poor survival.
CONCLUSION: Our findings implicate AGER and CCNB1 might be potential biomarkers for diagnosis and prognosis targets for LUAD.

Zhong Z, Zhou F, Wang D, et al.
Expression of KLF9 in pancreatic cancer and its effects on the invasion, migration, apoptosis, cell cycle distribution, and proliferation of pancreatic cancer cell lines.
Oncol Rep. 2018; 40(6):3852-3860 [PubMed] Related Publications
Kruppel-like factor 9 (KLF9), a transcription factor, is critical for the inhibition of growth and development of tumors, whereas its effects in pancreatic cancer remains unclear. The purpose of the present study was to investigate the expression and functional significance of KLF9 in vitro, by assessing the expression of KLF9 in pancreatic cancer tissue samples and its association with the total survival of patients and clinicopathological data. The levels of KLF9 expression in adjacent tissues and pancreatic cancer tissues were detected using immunohistochemistry. Using western blot analyses, we assessed KLF9 expression in human pancreatic cancer cell lines. Using flow cytometric analysis and CCK-8, we evaluated the effects of KLF9 expression on cell apoptosis, the cell cycle and proliferation of pancreatic cancer cells. Its effects on migration and cell invasion were detected by performing Transwell assay. By conducting western blot analyses, we evaluated the expression of relative target proteins (involved in invasion, migration, apoptosis, and cell cycle distribution. Our results revealed that in both tissue samples and cell lines (particularly in BxPC-3 and PANC-1 cells) of pancreatic cancer, KLF9 exhibited relatively lower expression. In addition, low KLF9 expression was related to the differentiation (P<0.001) and depth of vascular invasion (P=0.016) and was associated with a poor overall survival rate. In PANC-1 and BxPC-3 cells, KLF9 overexpression decreased the proliferation of pancreatic cancer cells, induced apoptosis, blocked the cell cycle at the S phase, and inhibited the migration and invasion of tumor cells. KLF9 overexpression downregulated MMP-9, MMP-2 Bcl-2, N-cadherin and cyclin B, and upregulated the levels of E-cadherin, Bax, p53, CDK4 and cyclin D1. On the whole, our findings indicated that KLF9 exhibited low expression in pancreatic cancer, and upregulation of KLF9 may inhibit the progression of pancreatic cancer. KLF9 may have potential diagnostic and therapeutic values in this type of cancer.

Roskoski R
Cyclin-dependent protein serine/threonine kinase inhibitors as anticancer drugs.
Pharmacol Res. 2019; 139:471-488 [PubMed] Related Publications
Cyclins and cyclin-dependent protein kinases (CDKs) are important proteins that are required for the regulation and expression of the large number of components necessary for the passage through the cell cycle. The concentrations of the CDKs are generally constant, but their activities are controlled by the oscillation of the cyclin levels during each cell cycle. Additional CDK family members play significant roles in a wide range of activities including gene transcription, metabolism, and neuronal function. In response to mitogenic stimuli, cells in the G1-phase of the cell cycle produce D type cyclins that activate CDK4/6. These activated enzymes catalyze the monophosphorylation of the retinoblastoma protein. Subsequently, CDK2-cyclin E catalyzes the hyperphosphorylation of Rb that promotes the release and activation of the E2F transcription factor, which in turn lead to the biosynthesis of dozens of proteins required for cell cycle progression. Consequently, cells pass the G1-restriction point and are committed to complete cell division in the absence of mitogenic stimulation. CDK2-cyclin A, CDK1-cyclin A, and CDK1-cyclin B are required for S-, G2-, and M-phase progression. A crucial mechanism in controlling cell cycle progression is the precise timing of more than 32,000 phosphorylation and dephosphorylation reactions catalyzed by a network of protein kinases and phosphoprotein phosphatases as determined by mass spectrometry. Increased cyclin or CDK expression or decreased levels of endogenous CDK modulators/inhibitors such as INK4 or CIP/KIP have been observed in a wide variety of carcinomas, hematological malignancies, and sarcomas. The pathogenesis of neoplasms because of mutations in the CDKs are rare. Owing to their role in cell proliferation, CDKs represent natural targets for anticancer therapies. Palbociclib, ribociclib, and abemaciclib are FDA-approved CDK4/6 inhibitors used in the treatment of breast cancer. These drugs have IC

Liu F, Zu X, Xie X, et al.
Ethyl gallate as a novel ERK1/2 inhibitor suppresses patient-derived esophageal tumor growth.
Mol Carcinog. 2019; 58(4):533-543 [PubMed] Related Publications
Ethyl gallate (EG) is a phenolic compound that is isolated from walnut kernels, euphorbia fischeriana, and galla rhois. It has been reported to exhibit antioxidant and anticancer activities. However, EG's effects on esophageal cancer have not yet been investigated. In the present study, we report that EG is a novel ERK1/2 inhibitor that suppresses esophageal cancer growth in vitro and in vivo. EG suppressed anchorage-dependent and -independent esophageal cancer cell growth. The results of in vitro kinase assays and cell-based assays indicated that EG directly binds to and inhibits ERK1 and ERK2 activities and their downstream signaling. Additionally, EG's inhibitory effect on cell growth is resistant to the re-activation of ERK1/2. EG increased G2/M phase cell cycle by reducing the expression of cyclin A2 and cyclin B1. The compound also stimulated cellular apoptosis through the activation of caspases 3 and 7 and inhibition of BCL2 expression. Notably, EG inhibited patient-derived esophageal tumor growth in an in vivo mouse model. These results indicate that EG is an ERK1/2 inhibitor that could be useful for treating esophageal cancer.

Chen M, Yin X, Lu C, et al.
Mahanine induces apoptosis, cell cycle arrest, inhibition of cell migration, invasion and PI3K/AKT/mTOR signalling pathway in glioma cells and inhibits tumor growth in vivo.
Chem Biol Interact. 2019; 299:1-7 [PubMed] Related Publications
Gliomas are among the most frequent types of primary malignancies in the central nervous system. The main treatment for glioma includes surgical resection followed by a combination of radiotherapy and chemotherapy. Despite the availability of several treatments, the average survival for patients with glioma at advanced stages still remains 16 months only. Therefore, there is an urgent need to look for novel and more efficient drug candidates for the treatment of glioma. In the current study the anticancer activity of Mahanine was evaluated against a panel of glioma cells. The results revealed that Mahanine exerted significant anticancer effects on the glioma HS 683 cells with an IC

Li Q, Zhang Y, Jiang Q
MFAP5 suppression inhibits migration/invasion, regulates cell cycle and induces apoptosis via promoting ROS production in cervical cancer.
Biochem Biophys Res Commun. 2018; 507(1-4):51-58 [PubMed] Related Publications
Cervical cancer is one of the most lethal types of cancer among female. Microfibrillar-associated protein 5 (MFAP5) is an extracellular matrix (ECM) glycoprotein, and is confirmed to be involved in cell signaling during microfibril assembly, elastinogenesis and cell survival. However, the role of MFAP5 in cervical cancer development and progression remains poorly understood. In the study, MFAP5 was over-expressed in human cervical cancers, and in different cervical cancer cell lines. Patients suffering from cervical cancer with low MFAP5 expression exhibited better survival rate. Suppressing MFAP5 in cervical cancer cells markedly reduced the cell proliferation, migration and invasion by modulating epithelial-mesenchymal transition (EMT)-related signaling pathway. In addition, MFAP5 knockdown induced large number of cells distributed in G2/M phase, along with reduced Cyclin B1, Cyclin D1 and cyclin-dependent kinase 4 (CDK4) expressions, and enhanced p21 and p53 levels. Moreover, apoptosis was highly induced by MFAP5 silence through reducing Bcl-xl and Bcl-2 expressions, and promoting Bax, cleaved Caspase-3 and poly (ADP-Ribose) polymerase (PARP) expressions in cervical cancer cells. Reactive oxygen species (ROS) production levels were also higher in MFAP5-knockdown cells, along with Jun-N-terminal kinase (JNK) activation. Importantly, we found that MFAP5 knockdown-inhibited cervical cancer cell growth was dependent on ROS production. Finally, the depletion of MFAP5 prevented cervical cancer progression in vivo. In summary, our study identified a critical role played by MFAP5 in the progression of cervical cancer and the potential mechanisms by which exerted its effects, indicating that targeting MFAP5-related pathways could be conducive to the therapies for cervical cancer.

Liu A, Zeng S, Lu X, et al.
Overexpression of G2 and S phase-expressed-1 contributes to cell proliferation, migration, and invasion via regulating p53/FoxM1/CCNB1 pathway and predicts poor prognosis in bladder cancer.
Int J Biol Macromol. 2019; 123:322-334 [PubMed] Related Publications
Bladder cancer is one of the most common urogenital tumors worldwide. The specific function and molecular mechanism of GTSE1 in bladder cancer remain unknown. In the present study, real-time quantitative polymerase chain reaction and Western blotting were used to identify GTSE1 expression in bladder cancer tissues and cells, and immunohistochemical assays were conducted to investigate GTSE1 expression in tissue microarray. Regression analyses explored the relationship between GTSE1 expression and pathological characteristics. A series of functional tests were performed to observe the effects of GTSE1 knockdown or overexpression, and the related mechanism was also performed. GTSE1 expression was significantly higher in bladder cancer tissues; overexpression of GTSE1 was positively associated with disease recurrence history, lymph node invasion, and progression. Patients with higher GTSE1 expression were more likely to experience shorter survival time, and GTSE1 expression served as a prognostic factor for the disease progression. Knockdown of GTSE1 obviously suppressed the proliferation, migration, and invasion capacity whereas increasing GTSE1 led to the opposite trend, which suggested that GTSE1 could serve as a potential therapeutic target for bladder cancer. GTSE1 overexpression in bladder cancer might participate in the regulation of FoxM1/CCNB1 expression via the induction of the transfer of p53 to cytoplasm.

Geng RX, Li N, Xu Y, et al.
Identification of Core Biomarkers Associated with Outcome in Glioma: Evidence from Bioinformatics Analysis.
Dis Markers. 2018; 2018:3215958 [PubMed] Free Access to Full Article Related Publications
Glioma is the most common neoplasm of the central nervous system (CNS); the progression and outcomes of which are affected by a complicated network of genes and pathways. We chose a gene expression profile of GSE66354 from GEO database to search core biomarkers during the occurrence and development of glioma. A total of 149 samples, involving 136 glioma and 13 normal brain tissues, were enrolled in this article. 1980 differentially expressed genes (DEGs) including 697 upregulated genes and 1283 downregulated genes between glioma patients and healthy individuals were selected using GeoDiver and GEO2R tool. Then, gene ontology (GO) analysis as well as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were carried out using the Database for Annotation, Visualization and Integrated Discovery (DAVID). Moreover, Cytoscape with Search Tool for the Retrieval of Interacting Genes (STRING) and Molecular Complex Detection (MCODE) plug-in was employed to imagine protein-protein interaction (PPI) of these DEGs. The upregulated genes were enriched in cell cycle, ECM-receptor interaction, and p53 signaling pathway, while the downregulated genes were enriched in retrograde endocannabinoid signaling, glutamatergic synapse, morphine addiction, GABAergic synapse, and calcium signaling pathway. Subsequently, 4 typical modules were discovered by the PPI network utilizing MCODE software. Besides, 15 hub genes were chosen according to the degree of connectivity, including TP53, CDK1, CCNB1, and CCNB2, the Kaplan-Meier analysis of which was further identified. In conclusion, this bioinformatics analysis indicated that DEGs and core genes, such as TP53, might influence the development of glioma, especially in tumor proliferation, which were expected to be promising biomarkers for diagnosis and treatment of glioma.

He P, Sun X, Cheng HJ, et al.
UBA2 promotes proliferation of colorectal cancer.
Mol Med Rep. 2018; 18(6):5552-5562 [PubMed] Free Access to Full Article Related Publications
Small ubiquitin‑like modifier proteins are involved in tumorigenesis; however, the potential effects and functions of the family member ubiquitin‑like modifier‑activating enzyme 2 (UBA2) on colorectal cancer are not clear. The present study aimed to examine the effects of UBA2 on the proliferation of colorectal cancer cells in vitro and in vivo. The mRNA and protein expression levels of UBA2 in patients with colorectal cancer were measured by reverse transcription‑quantitative polymerase chain reaction and immunohistochemistry, respectively. UBA2 expression levels in colorectal cancer tissues were significantly increased compared with the paracancerous normal tissues. The expression of UBA2 was also associated with higher stage colorectal cancer and poor prognosis. MTT and colony formation assays were used to examine proliferation in colorectal cancer cell lines. Flow cytometry was performed to examine the effects of UBA2 on the cell cycle and apoptosis of colorectal cancer cell lines and protein expression levels were examined by western blotting. Athymic nude mice were used to examine the ability of transfected colorectal cancer cells to form tumors in vivo. Downregulation of UBA2 inhibited the proliferation of colorectal cancer cell lines in vitro and in vivo through the regulation of cell cycle associated protein expression and apoptosis. Furthermore, downregulation of UBA2 decreased the expression levels of cyclin B1, B‑cell lymphoma-2, phosphorylated protein kinase B and E3 ubiquitin‑protein ligase MDM2 in colorectal cancer cells, whereas the expression levels of p21 and p27 were increased. UBA2 was demonstrated to serve an essential role in the proliferation of colorectal cancer and may be used as a potential biomarker to predict prognosis and as a therapeutic target in colorectal cancer.

Zhuang L, Yang Z, Meng Z
Upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in Tumor Tissues Predicted Worse Overall Survival and Disease-Free Survival in Hepatocellular Carcinoma Patients.
Biomed Res Int. 2018; 2018:7897346 [PubMed] Free Access to Full Article Related Publications
Objective: To evaluate the association between upregulated differentially expressed genes (DEGs) and the outcomes of patients with hepatocellular carcinoma (HCC).
Methods: Using Gene Expression Omnibus (GEO) datasets including GSE45436, GSE55092, GSE60502, GSE84402, and GSE17548, we detected upregulated DEGs in tumors. KEGG, GO, and Reactome enrichment analysis of the DEGs was conducted to clarify their function. The impact of the upregulated DEGs on patients' survival was analyzed based on TCGA profile.
Results: 161 shared upregulated DEGs were identified among GSE45436, GSE55092, GSE60502, and GSE84402 profiles. Cell cycle was the shared pathway/biological process in the gene sets investigation among databases of KEGG, GO, and Reactome. After being validated in GSE17548, 13 genes including BUB1B, CCNA2, CCNB1, CCNE2, CDC20, CDC6, CDC7, CDK1, CDK4, CDKN2A, CHEK1, MAD2L1, and MCM3 in cell cycle pathway were shared in the three databases for enrichment. The expression of BUB1B, CCNB1, CDC7, CDC20, and MCM3 was upregulated in HCC tissues when compared with adjacent normal tissues in 6.67%, 7.5%, 8.06%, 5.56%, and 9.72% of HCC patients, respectively. Overexpression of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in HCC tissues accounted for poorer overall survival (OS) and disease-free survival (DFS) in HCC patients (all log rank
Conclusion: Correlated with advanced histologic grade and/or vascular invasion, upregulation of BUB1B, CCNB1, CDC7, CDC20, and MCM3 in HCC tissues predicted worse OS and DFS in HCC patients. These genes could be novel therapeutic targets for HCC treatment.

Cao YP, Zhou J, Li WJ, et al.
Long Non-Coding RNA Expression Profiles for the Characterization of Different Bladder Cancer Grade.
Cell Physiol Biochem. 2018; 50(3):1154-1163 [PubMed] Related Publications
BACKGROUND/AIMS: Bladder cancer (BC) is one of the most frequent urologic tumors worldwide. However, long non-coding RNA(lncRNA) expression profiles in BC progression remain unclear. This study aimed to explore lncRNA expression profiles in different grades of bladder cancer and normal urothelium tissues.
METHODS: We performed high-throughput sequencing in BC tissues of different grade and obtained the expression profiles of its lncRNAs. Then, aberrantly expressed lncRNAs were validated by quantitative reverse transcription polymerase chain reaction (RT-PCR). Gene Ontology (GO) and pathway analyses were used to investigate the potential function of these lncRNAs. Co-expresson network was constructed to explore the relationship between lncRNAs and target mRNAs.
RESULTS: We identified 252 aberrantly expressed lncRNAs in high-grade BC while compared to low-grade BC, and 269 lncRNAs in high-grade BC while compared to normal urothelium. Notably, we found 33 overlapped lncRNAs. Subsequently, 7 lncRNAs were selected from the overlapped part and confirmed by RT-PCR. GO and pathway analyses showed that these dysregulated lncRNAs participated in cell migration, cell adhesion, as well as Ras signaling pathway. Co-expression network and The Cancer Genome Atlas (TCGA) data showed LUCAT1 and CCNB1 had positive relationship in regulating the progress of bladder cancer.
CONCLUSION: Our findings revealed the significant role of lncRNAs in the development process of bladder cancer.

Gera R, Mokbel L, Jiang WG, Mokbel K
mRNA Expression of
Cancer Genomics Proteomics. 2018 Nov-Dec; 15(6):447-452 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Cyclin-dependent kinase 2-associated protein 1 (CDK2AP1) interacts with CDK2AP2, modulates the actions of transforming growth factor-B1, cyclin-dependent kinase 2 and retinoblastoma protein, and closely interacts with micro-RNA21 and micro-RNA25. Our objective was to determine if CDK2AP1 mRNA expression levels were consistent with tumour-suppressive functions in breast cancer.
MATERIALS AND METHODS: A total of 134 samples were analysed. CDK2AP1 mRNA levels were measured using quantitative polymerase chain reaction (RT-PCR) and normalised against glyceraldehyde 3-phosphate dehydrogenase mRNA. Levels in breast cancer and adjacent non-cancerous breast tissue were analysed against pathological and clinical parameters (TNM staging, survival over a 10-year follow-up period).
RESULTS: Normalised CDK2AP1 expression was 38-fold higher in adjacent non-cancerous breast tissue than in breast cancer. CDK2AP1 expression in disease-free patients at 10 years was more than threefold that of patients who died of breast cancer. However, neither of these differences in expression levels reached statistical significance. CDK2AP1 mRNA levels were higher in TNM1 compared to TNM3 (p=0.016) and with TNM4 (p=0.016). There were no significant associations between CDK2AP1 expression and estrogen receptor status, tumour grade and tumour type. There was no significant difference in overall survival between patients with high and those with low CDK2AP1 mRNA levels after a median follow-up of 10 years (Kaplan-Meier analysis, p=0.872).
CONCLUSION: To our knowledge, this is the first study in the literature to examine the mRNA expression of CDK2AP1 in human breast cancer over a long-term follow-up period. A compelling relationship exists between high CDK2AP1 mRNA expression and lower TNM classification of breast cancer, which is consistent with CDK2AP1 having a tumour-suppressive function.

Gao X, Wang X, Zhang S
Bioinformatics identification of crucial genes and pathways associated with hepatocellular carcinoma.
Biosci Rep. 2018; 38(6) [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is a major cause of cancer-related death worldwide. Up to date, HCC pathogenesis has not been fully understood. The aim of the present study was to identify crucial genes and pathways associated with HCC by bioinformatics methods. The differentially expressed genes (DEGs) between 14 HCC tissues and corresponding non-cancerous tissues were identified using limma package. Gene Ontology (GO) and KEGG pathway enrichment analysis of DEGs were performed by clusterProfiler package. The protein-protein interaction (PPI) network of DEGs was constructed and visualized by STRING database and Cytoscape software, respectively. The crucial genes in PPI network were identified using a Cytoscape plugin, CytoNCA. Furthermore, the effect of the expression level of the crucial genes on HCC patient survival was analyzed by an interactive web-portal, UALCAN. A total of 870 DEGs including 237 up-regulated and 633 down-regulated genes were identified in HCC tissues. KEGG pathway analysis revealed that DEGs were mainly enriched in complement and coagulation cascades pathway, chemical carcinogenesis pathway, retinol metabolism pathway, fatty acid degradation pathway, and valine, leucine and isoleucine degradation pathway. PPI network analysis showed that

Lin J, Hou Y, Huang S, et al.
Exportin-T promotes tumor proliferation and invasion in hepatocellular carcinoma.
Mol Carcinog. 2019; 58(2):293-304 [PubMed] Free Access to Full Article Related Publications
Exportin-T (XPOT) belongs to the RAN-GTPase exportin family that mediates export of tRNA from the nucleus to the cytoplasm. Up-regulation of XPOT indicates poor prognosis in breast cancer patients. However, the correlation between XPOT and hepatocellular carcinoma (HCC) remains unclear. Here, we found that high expression of XPOT in HCC indicated worse prognosis via bioinformatics analysis. Consistently, immunohistochemical staining of 95 pairs of tumors and adjacent normal liver tissues (ANLT) also showed up-regulation of XPOT. Small interfering (si) RNA transfection was used to down-regulate XPOT in HepG2 and 7721 cell lines. Cell Counting Kit-8 (CCK8) assays were performed to analyze cell proliferation. Cell migration and invasion were measured by scratch wound healing assays and migration assays. Subcutaneous xenograft models were using to explore the role of XPOT in tumor formation in vivo. Down-regulation of XPOT significantly inhibited tumor proliferation and invasion in vitro and vivo. Gene set enrichment analysis (GSEA) results indicated that XPOT may affect tumor progression through cell cycle and ubiquitin-mediated proteolysis. Furthermore, knockdown of XPOT caused a block in G0/G1 phase as evidenced by down-regulation of cyclin-dependent kinase 1 (CDK1), cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), CyclinA1 (CCNA1), CyclinB1 (CCNB1), CyclinB2 (CCNB2), and CyclinE2 (CCNE2) in HCC cells. In conclusion, our findings indicate that XPOT could serve as a novel biomarker for prognoses and a potential therapeutic target for patients with HCC.

Choi EK, Lim JA, Kim JK, et al.
Cyclin B1 stability is increased by interaction with BRCA1, and its overexpression suppresses the progression of BRCA1-associated mammary tumors.
Exp Mol Med. 2018; 50(10):136 [PubMed] Free Access to Full Article Related Publications
Germline BRCA1 mutations predispose women to breast and ovarian cancer. BRCA1, a large protein with multiple functional domains, interacts with numerous proteins involved in many important biological processes and pathways. However, to date, the role of BRCA1 interactions at specific stages in the progression of mammary tumors, particularly in relation to cell cycle regulation, remains elusive. Here, we demonstrate that BRCA1 interacts with cyclin B1, a crucial cell cycle regulator, and that their interaction is modulated by DNA damage and cell cycle phase. In DNA-damaged mitotic cells, BRCA1 inhibits cytoplasmic transportation of cyclin B1, which prevents cyclin B1 degradation. Moreover, restoration of cyclin B1 in BRCA1-deficient cells reduced cell survival in association with induction of apoptosis. We further demonstrate that treatment of Brca1-mutant mammary tumors with vinblastine, which induces cyclin B1, significantly reduced tumor progression. In addition, a correlation analysis of vinblastine responses and gene expression profiles in tumors at baseline revealed 113 genes that were differentially expressed between tumors that did and did not respond to vinblastine treatment. Further analyses of protein-protein interaction networks revealed gene clusters related to vinblastine resistance, including nucleotide excision repair, epigenetic regulation, and the messenger RNA surveillance pathway. These findings enhance our understanding of how loss of BRCA1 disrupts mitosis regulation through dysregulation of cyclin B1 and provide evidence suggesting that targeting cyclin B1 may be useful in BRCA1-associated breast cancer therapy.

Zhao Y, Onda K, Sugiyama K, et al.
Antitumor effects of arsenic disulfide on the viability, migratory ability, apoptosis and autophagy of breast cancer cells.
Oncol Rep. 2019; 41(1):27-42 [PubMed] Free Access to Full Article Related Publications
In the present study, the antitumor effects of arsenic disulfide (As2S2) on the proliferative, survival and migratory ability of human breast cancer MCF‑7 and MDA‑MB‑231 cells were investigated, and its potential underlying molecular mechanisms with an emphasis on cell cycle arrest, apoptosis induction, autophagy induction and reactive oxygen species (ROS) generation were determined. The results indicated that As2S2 significantly inhibited the viability, survival and migration of breast cancer cells in a dose‑dependent manner. In addition, it was identified that As2S2 induced cell cycle arrest primarily at G2/M phase in the two breast cancer cell lines by regulating the expression of associated proteins, including cyclin B1 and cell division cycle protein 2. In addition to cell cycle arrest, As2S2 also triggered the induction of apoptosis in cells by activating the expression of pro‑apoptotic proteins, including caspase‑7 and ‑8, as well as increasing the B‑cell lymphoma 2 (Bcl‑2)‑associated X protein/Bcl‑2 ratio, while decreasing the protein expression of anti‑apoptotic B‑cell lymphoma extra‑large. In addition, As2S2 stimulated the accumulation of microtubule‑associated protein 1A/1B‑light chain 3 (LC3)‑II and increased the LC3‑II/LC3‑I ratio, indicating the occurrence of autophagy. As2S2 treatment also inhibited the protein expression of matrix metalloproteinase‑9 (MMP‑9), but increased the intracellular accumulation of ROS in the two breast cancer cell lines, which may assist in alleviating metastasis and attenuating the progression of breast cancer. Taken together, the results of the present study suggest that As2S2 inhibits the progression of human breast cancer cells through the regulation of cell cycle arrest, intrinsic and extrinsic apoptosis, autophagy, MMP‑9 signaling and ROS generation.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. CCNB1, Cancer Genetics Web: http://www.cancer-genetics.org/CCNB1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999