SCGB3A1

Gene Summary

Gene:SCGB3A1; secretoglobin family 3A member 1
Aliases: HIN1, HIN-1, LU105, UGRP2, PnSP-2
Location:5q35.3
Summary:-
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:secretoglobin family 3A member 1
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (5)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Case-Control Studies
  • DNA Methylation
  • Estrogen Receptors
  • Nuclear Proteins
  • Polymerase Chain Reaction
  • Neoplasm Invasiveness
  • Receptors, Progesterone
  • Ductal Breast Carcinoma
  • Cadherins
  • CpG Islands
  • Chromosome 5
  • Mutation
  • Breast Cancer
  • Promoter Regions
  • Cancer DNA
  • BRCA1
  • Cytokines
  • ROC Curve
  • Cluster Analysis
  • Vitamin D
  • Oligonucleotide Array Sequence Analysis
  • Testicular Cancer
  • Homeodomain Proteins
  • Cyclin D2
  • Gene Silencing
  • Receptors, Retinoic Acid
  • Genetic Predisposition
  • Reproducibility of Results
  • Tumor Suppressor Gene
  • Epigenetics
  • Biomarkers, Tumor
  • Gene Expression Profiling
  • Prostate Cancer
  • Neoplasm Proteins
  • GSTP1
  • Carcinoma, Intraductal, Noninfiltrating
  • Azacitidine
  • Lung Cancer
  • Cancer Gene Expression Regulation
  • Breast
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (5)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: SCGB3A1 (cancer-related)

Singh V, Singh AP, Sharma I, et al.
Epigenetic deregulations of Wnt/β-catenin and transforming growth factor beta-Smad pathways in esophageal cancer: Outcome of DNA methylation.
J Cancer Res Ther. 2019 Jan-Mar; 15(1):192-203 [PubMed] Related Publications
Background: Promoter methylation of tumor suppressor genes (TSGs) is a well-reported portent in carcinogenesis; hence, it is worthy to investigate this in high-risk Northeast population of India. The study was designed to investigate methylation status of 94 TSGs in esophageal squamous cell carcinoma (ESCC). Further, the effect of OPCML promoter methylation on gene expression was analyzed by immunohistochemistry. Moreover, in silico protein-protein interactions were examined among 8 TSGs identified in the present study and 23 epigenetically regulated genes reported previously by our group in ESCC.
Materials and Methods: Methylation profiling was carried out by polymerase chain reaction array and OPCML protein expression was examined by tissue microarray-based immunohistochemistry.
Results: OPCML, NEUROG1, TERT, and WT1 genes were found hypermethylated and SCGB3A1, CDH1, THBS1, and VEGFA were hypomethylated in Grade 2 tumor. No significant change in OPCML expression was observed among control, Grade 1, and Grade 2 tumor. Conclusively, hypermethylation of the studied OPCML promoter in Grade 2 tumor produced no effect on expression. Unexpectedly, OPCML expression was downregulated in Grade 3 tumor in comparison to other groups signifying that downregulation of OPCML expression may lead to higher grade of tumor formation at the time of diagnosis of ESCC in patients. Significant interactions at protein level were found as VEGFA:PTK2, CTNNB1:CDH1, CTNNB1:VEGFA, CTNNB1:NEUROG1, CTNND2:CDH1, and CTNNB1:TERT. These interactions are pertinent to Wnt/β-catenin and TGF-β-Smad pathways.
Conclusions: Deranged OPCML expression may lead to high-grade ESCC as well as epigenetically regulated genes, that is, CDH1, CTNNB1, CTNND2, THBS1, PTK2, WT1, OPCML, TGFB1, and SMAD4 may alter the Wnt/β-catenin and TGF-β-Smad pathways in ESCC. Further study of these genes could be useful to understand the molecular pathology of ESCC with respect to epithelial-mesenchymal transition (EMT) mediated by Wnt/β-catenin and TGF-β signaling pathways.

Callahan CL, Bonner MR, Nie J, et al.
Active and secondhand smoke exposure throughout life and DNA methylation in breast tumors.
Cancer Causes Control. 2019; 30(1):53-62 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
PURPOSE: Tobacco smoke exposure has been associated with altered DNA methylation. However, there is a paucity of information regarding tobacco smoke exposure and DNA methylation of breast tumors.
METHODS: We conducted a case-only analysis using breast tumor tissue from 493 postmenopausal and 225 premenopausal cases in the Western New York Exposures and Breast Cancer (WEB) study. Methylation of nine genes (SFN, SCGB3A1, RARB, GSTP1, CDKN2A, CCND2, BRCA1, FHIT, and SYK) was measured with pyrosequencing. Participants reported their secondhand smoke (SHS) and active smoking exposure for seven time periods. Unconditional logistic regression was used to estimate odds ratios (OR) of having methylation higher than the median.
RESULTS: SHS exposure was associated with tumor DNA methylation among postmenopausal but not premenopausal women. Active smoking at certain ages was associated with increased methylation of GSTP1, FHIT, and CDKN2A and decreased methylation of SCGB3A1 and BRCA1 among both pre- and postmenopausal women.
CONCLUSION: Exposure to tobacco smoke may contribute to breast carcinogenesis via alterations in DNA methylation. Further studies in a larger panel of genes are warranted.

Costa AL, Moreira-Barbosa C, Lobo J, et al.
DNA methylation profiling as a tool for testicular germ cell tumors subtyping.
Epigenomics. 2018; 10(12):1511-1523 [PubMed] Related Publications
AIM: Assess differential patterns of selected five genes' promoter methylation among testicular germ cell tumors (TGCT) subtypes.
MATERIALS & METHODS:  CRIPTO, HOXA9, MGMT, RASSF1A and SCGB3A1 promoter methylation levels were evaluated by quantitative methylation-specific PCR in 161 TGCT and 16 controls. Associations between clinicopathological parameters and promoter methylation levels were assessed, and receiver operating characteristics curve analysis was performed.
RESULTS: Promoter methylation of CRIPTO/HOXA9/SCGB3A1 panel and RASSF1A best discriminated between controls and nonseminomatous tumors or seminomas, respectively, whereas HOXA9/RASSF1A panel displayed the best discriminative performance between nonseminomatous tumor and seminomas. Significant differences in CRIPTO, MGMT and RASSF1A methylation levels were depicted between pure forms and matched mixed components of seminomas and embryonal carcinoma. HOXA9, RASSF1A and SCGB3A1 promoter methylation significantly associated with tumor stage.
CONCLUSION: Different combinations of five genes' promoter methylation levels discriminate among TGCT subtypes. Methylation patterns may also assist in identification of more clinically aggressive tumors.

Moses-Fynn E, Tang W, Beyene D, et al.
Correlating blood-based DNA methylation markers and prostate cancer risk in African-American men.
PLoS One. 2018; 13(9):e0203322 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
The objective of this work was to investigate the clinical significance of promoter gene DNA methylation changes in whole blood from African-American (AA) men with prostate cancer (PCa). We used high throughput pyrosequencing analysis to quantify percentage DNA methylation levels in a panel of 8 genes (RARβ2, TIMP3, SPARC, CDH13, HIN1, LINE1, CYB5R2 and DRD2) in blood DNA obtained from PCa and non-cancerous controls cases. Correlations of methylation status and various clinicopathological features were evaluated. Six genes tested achieved significant difference in DNA methylation levels between the PCa compared to control cases (P < 0.05). The TIMP3 loci demonstrated significant correlation of DNA methylation with age for all cases analyzed (p < 0.05). We observed an inverse correlation between CDH13 methylation (p = 0.045; r = -0.21) and serum vitamin D level whereas TIMP3 methylation (p = 0.021; r = -0.24) and DRD2 methylation (p = 0.056; r = -0.201) showed inverse correlation with supplementary vitamin D in the cancer cases. We also observed a direct correlation between methylation of RARβ2 (p = 0.0036; r = 0.293) and SPARC (p = 0.0134; r = 0.20) loci with PSA level in the controls but not the cancer cases. In addition, alcohol cases significantly correlated with higher RARβ2 methylation (p = 0.0314) in comparison with non-alcohol cases. Furthermore, we observed an inverse correlation of DRD2 methylation (p = 0.0349; r = -0.343) and Gleason score. Our data suggests that promoter methylation occurred more frequently in the blood of AA PCa and is associated with various clinicopathological features in AA men with PCa.

Callahan CL, Bonner MR, Nie J, et al.
Lifetime exposure to ambient air pollution and methylation of tumor suppressor genes in breast tumors.
Environ Res. 2018; 161:418-424 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: We previously reported increased risk of breast cancer associated with early life exposure to two measures of air pollution exposure, total suspended particulates (TSP) and traffic emissions (TE), possible proxies for exposure to polycyclic aromatic hydrocarbons (PAHs). Exposure to PAHs has been shown to be associated with aberrant patterns of DNA methylation in peripheral blood of healthy individuals. Exposure to PAHs and methylation in breast tumor tissue has received little attention. We examined the association of early life exposure to TSP and TE with patterns of DNA methylation in breast tumors.
METHODS: We conducted a study of women enrolled in the Western New York Exposures and Breast Cancer (WEB) Study. Methylation of nine genes (SFN, SCGB3A1, RARB, GSTP1, CDKN2A CCND2, BRCA1, FHIT, and SYK) was assessed using bisulfite-based pyrosequencing. TSP exposure at each woman's home address at birth, menarche, and when she had her first child was estimated. TE exposure was modeled for each woman's residence at menarche, her first birth, and twenty and ten years prior to diagnosis. Unconditional logistic regression was employed to estimate odds ratios (OR) of having methylation greater than the median value, adjusting for age, secondhand smoke exposure before age 20, current smoking status, and estrogen receptor status.
RESULTS: Exposure to higher TSP at a woman's first birth was associated with lower methylation of SCGB3A1 (OR = 0.48, 95% CI: 0.23-0.99) and higher methylation of SYK (OR = 1.86, 95% CI: 1.03-3.35). TE at menarche was associated with increased methylation of SYK (OR = 2.37, 95% CI: 1.05-5.33). TE at first birth and ten years prior to diagnosis was associated with decreased methylation of CCND2 (OR ten years prior to diagnosis=0.48, 95% CI: 0.26-0.89). Although these associations were nominally significant, none were significant after adjustment for multiple comparisons (p < 0.01).
CONCLUSIONS: We observed suggestive evidence that exposure to ambient air pollution throughout life, measured as TSP and TE, may be associated with DNA methylation of some tumor suppressor genes in breast tumor tissue. Future studies with a larger sample size that assess methylation of more sites are warranted.

Yu G, Li C, Xie W, et al.
Long non-coding RNA C5orf66-AS1 is downregulated in pituitary null cell adenomas and is associated with their invasiveness.
Oncol Rep. 2017; 38(2):1140-1148 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Pituitary null cell adenoma is a challenging clinical condition, and its pathogenesis remains to be elucidated. We performed this study to determine the roles of C5orf66-AS1, NORAD, and TINCR in the pathogenesis and invasion of pituitary null cell adenomas. Expression of the three long non-coding RNAs in pituitary null cell adenoma tissues of 11 patients and normal pituitary tissues from four donors was examined by performing quantitative reverse transcription-polymerase chain reaction. We found that C5orf66-AS1 expression was lower in pituitary null cell adenoma tissues than in normal pituitary tissues. Moreover, C5orf66-AS1 expression level was significantly lower in invasive pituitary null cell adenomas than in non-invasive ones. After transfection of C5orf66-AS1 into pituitary adenoma cells, assessment of cell viability and invasion suggested that overexpressed C5orf66-AS1 inhibited cell viability and cell invasion. In silico algorithms predicted several cis- and trans-acting target genes of C5orf66-AS1, including PITX1 and SCGB3A1. In addition, expression of some of the predicted target genes was determined using microarray data of another cohort with pituitary null cell adenomas. It showed that some of these target genes were differentially expressed between pituitary null cell adenoma tissues and normal pituitary tissues as well as between invasive and non-invasive tumors. Co-expression analysis in RNA sequencing data showed that PAQR7 was the most correlated gene of C5orf66-AS1 and that several predicted trans-acting target genes, including SCGB3A1, were highly correlated with C5orf66-AS1. NORAD and TINCR expression was not statistically significant in the complete cohort; however, a negative correlation was observed between NORAD expression and maximum tumor diameter in some subgroups. These results indicate that C5orf66-AS1 suppresses the development and invasion of pituitary null cell adenomas. However, our results do not provide enough statistical evidence to support the roles of NORAD and TINCR in the development and invasion of pituitary null cell adenomas.

Gurioli G, Salvi S, Martignano F, et al.
Methylation pattern analysis in prostate cancer tissue: identification of biomarkers using an MS-MLPA approach.
J Transl Med. 2016; 14(1):249 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Epigenetic silencing mediated by CpG island methylation is a common feature of many cancers. Characterizing aberrant DNA methylation changes associated with prostate carcinogenesis could potentially identify a tumour-specific methylation pattern, facilitating the early diagnosis of prostate cancer. The objective of the study was to assess the methylation status of 40 tumour suppressor genes in prostate cancer and healthy prostatic tissues.
METHODS: We used methylation specific-multiplex ligation probe amplification (MS-MLPA) assay in two independent case series (training and validation set). The training set comprised samples of prostate cancer tissue (n = 40), healthy prostatic tissue adjacent to the tumor (n = 26), and healthy non prostatic tissue (n = 23), for a total of 89 DNA samples; the validation set was composed of 40 prostate cancer tissue samples and their adjacent healthy prostatic tissue, for a total of 80 DNA samples. Methylation specific-polymerase chain reaction (MSP) was used to confirm the results obtained in the validation set.
RESULTS: We identified five highly methylated genes in prostate cancer: GSTP1, RARB, RASSF1, SCGB3A1, CCND2 (P < 0.0001), with an area under the ROC curve varying between 0.89 (95 % CI 0.82-0.97) and 0.95 (95 % CI 0.90-1.00). Diagnostic accuracy ranged from 80 % (95 % CI 70-88) to 90 % (95 % CI 81-96). Moreover, a concordance rate ranging from 83 % (95 % CI 72-90) to 89 % (95 % CI 80-95) was observed between MS-MLPA and MSP.
CONCLUSIONS: Our preliminary results highlighted that hypermethylation of GSTP1, RARB, RASSF1, SCGB3A1 and CCND2 was highly tumour-specific in prostate cancer tissue.

Callahan CL, Wang Y, Marian C, et al.
DNA methylation and breast tumor clinicopathological features: The Western New York Exposures and Breast Cancer (WEB) study.
Epigenetics. 2016; 11(9):643-652 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
We evaluated the association between methylation of 9 genes, SCGB3A1, GSTP1, RARB, SYK, FHIT, CDKN2A, CCND2, BRCA1, and SFN in tumor samples from 720 breast cancer cases with clinicopathological features of the tumors and survival. Logistic regression was used to estimate odds ratios (OR) of methylation and Cox proportional hazards models to estimate hazard ratios (HR) between methylation and breast cancer related mortality. Estrogen receptor (ER) and progesterone receptor (PR) positivity were associated with increased SCGB3A1 methylation among pre- and post-menopausal cases. Among premenopausal women, compared with Stage 0 cases, cases of invasive cancer were more likely to have increased methylation of RARB (Stage I OR = 4.7, 95% CI: 1.1-19.0; Stage IIA/IIB OR = 9.7, 95% CI: 2.4-39.9; Stage III/IV OR = 5.6, 95% CI: 1.1-29.4) and lower methylation of FHIT (Stage I OR = 0.2, 95% CI: 0.1-0.9; Stage IIA/IIB OR = 0.2, 95% CI: 0.1-0.8; Stage III/IV OR = 0.6, 95% CI: 0.1-3.4). Among postmenopausal women, methylation of SYK was associated with increased tumor size (OR = 1.7, 95% CI: 1.0-2.7) and higher nuclear grade (OR = 2.0, 95% CI 1.2-3.6). Associations between methylation and breast cancer related mortality were observed among pre- but not post-menopausal women. Methylation of SCGB3A1 was associated with reduced risk of death from breast cancer (HR = 0.41, 95% CI: 0.17-0.99) as was BRCA1 (HR = 0.41, 95% CI: 0.16-0.97). CCND2 methylation was associated with increased risk of breast cancer mortality (HR = 3.4, 95% CI: 1.1-10.5). We observed differences in methylation associated with tumor characteristics; methylation of these genes was also associated with breast cancer survival among premenopausal cases. Understanding of the associations of DNA methylation with other clinicopathological features may have implications for prevention and treatment.

Ma K, Cao B, Guo M
The detective, prognostic, and predictive value of DNA methylation in human esophageal squamous cell carcinoma.
Clin Epigenetics. 2016; 8:43 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Esophageal cancer is one of the most common malignancies in the world. Squamous cell carcinoma accounts for approximately 90 % of esophageal cancer cases. Genetic and epigenetic changes have been found to accumulate during the development of various cancers, including esophageal squamous carcinoma (ESCC). Tobacco smoking and alcohol consumption are two major risk factors for ESCC, and both tobacco and alcohol were found to induce methylation changes in ESCC. Growing evidence demonstrates that aberrant epigenetic changes play important roles in the multiple-step processes of carcinogenesis and tumor progression. DNA methylation may occur in the key components of cancer-related signaling pathways. Aberrant DNA methylation affects genes involved in cell cycle, DNA damage repair, Wnt, TGF-β, and NF-κB signaling pathways, including P16, MGMT, SFRP2, DACH1, and ZNF382. Certain genes methylated in precursor lesions of the esophagus demonstrate that DNA methylation may serve as esophageal cancer early detection marker, such as methylation of HIN1, TFPI-2, DACH1, and SOX17. CHFR methylation is a late stage event in ESCC and is a sensitive marker for taxanes in human ESCC. FHIT methylation is associated with poor prognosis in ESCC. Aberrant DNA methylation changes may serve as diagnostic, prognostic, and chemo-sensitive markers. Characterization of the DNA methylome in ESCC will help to better understand its mechanisms and develop improved therapies.

Benevolenskaya EV, Islam AB, Ahsan H, et al.
DNA methylation and hormone receptor status in breast cancer.
Clin Epigenetics. 2016; 8:17 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: We examined whether differences in tumor DNA methylation were associated with more aggressive hormone receptor-negative breast cancer in an ethnically diverse group of patients in the Breast Cancer Care in Chicago (BCCC) study and using data from The Cancer Genome Atlas (TCGA).
RESULTS: DNA was extracted from formalin-fixed, paraffin-embedded samples on 75 patients (21 White, 31 African-American, and 23 Hispanic) (training dataset) enrolled in the BCCC. Hormone receptor status was defined as negative if tumors were negative for both estrogen and progesterone (ER/PR) receptors (N = 22/75). DNA methylation was analyzed at 1505 CpG sites within 807 gene promoters using the Illumina GoldenGate assay. Differential DNA methylation as a predictor of hormone receptor status was tested while controlling for false discovery rate and assigned to the gene closest to the respective CpG site. Next, those genes that predicted ER/PR status were validated using TCGA data with respect to DNA methylation (validation dataset), and correlations between CpG methylation and gene expression were examined. In the training dataset, 5.7 % of promoter mean methylation values (46/807) were associated with receptor status at P < 0.05; for 88 % of these (38/46), hypermethylation was associated with receptor-positive disease. Hypermethylation for FZD9, MME, BCAP31, HDAC9, PAX6, SCGB3A1, PDGFRA, IGFBP3, and PTGS2 genes most strongly predicted receptor-positive disease. Twenty-one of 24 predictor genes from the training dataset were confirmed in the validation dataset. The level of DNA methylation at 19 out 22 genes, for which gene expression data were available, was associated with gene activity.
CONCLUSIONS: Higher levels of promoter methylation strongly correlate with hormone receptor positive status of breast tumors. For most of the genes identified in our training dataset as ER/PR receptor status predictors, DNA methylation correlated with stable gene expression level. The predictors performed well when evaluated on independent set of samples, with different racioethnic distribution, thus providing evidence that this set of DNA methylation biomarkers will likely generalize to prospective patient samples.

White AJ, Chen J, Teitelbaum SL, et al.
Sources of polycyclic aromatic hydrocarbons are associated with gene-specific promoter methylation in women with breast cancer.
Environ Res. 2016; 145:93-100 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Tobacco smoke, diet and indoor/outdoor air pollution, all major sources of polycyclic aromatic hydrocarbons (PAHs), have been associated with breast cancer. Aberrant methylation may be an early event in carcinogenesis, but whether PAHs influence the epigenome is unclear, particularly in breast tissue where methylation may be most relevant. We aimed to evaluate the role of methylation in the association between PAHs and breast cancer.
METHODS: In a population-based case-control study, we measured promoter methylation of 13 breast cancer-related genes in breast tumor tissue (n=765-851 cases) and global methylation in peripheral blood (1055 cases/1101 controls). PAH sources (current active smoking, residential environmental tobacco smoke (ETS), vehicular traffic, synthetic log burning, and grilled/smoked meat intake) were evaluated separately. Logistic regression was used to estimate adjusted odds ratios (ORs) and 95% confidence intervals (CIs).
RESULTS: When comparing methylated versus unmethylated genes, synthetic log use was associated with increased ORs for CDH1 (OR=2.26, 95%CI=1.06-4.79), HIN1 (OR=2.14, 95%CI=1.34-3.42) and RARβ (OR=1.80, 95%CI=1.16-2.78) and decreased ORs for BRCA1 (OR=0.44, 95%CI=0.30-0.66). Residential ETS was associated with decreased ORs for ESR1 (OR=0.74, 95%CI=0.56-0.99) and CCND2 methylation (OR=0.65, 95%CI=0.44-0.96). Current smoking and vehicular traffic were associated with decreased ORs for DAPK (OR=0.53, 95%CI=0.28-0.99) and increased ORs for TWIST1 methylation (OR=2.79, 95%CI=1.24-6.30), respectively. In controls, synthetic log use was inversely associated with LINE-1 (OR=0.59, 95%CI=0.41-0.86).
DISCUSSION: PAH sources were associated with hypo- and hypermethylation at multiple promoter regions in breast tumors and LINE-1 hypomethylation in blood of controls. Methylation may be a potential biologic mechanism for the associations between PAHs and breast cancer incidence.

Sheng Y, Wang H, Liu D, et al.
Methylation of tumor suppressor gene CDH13 and SHP1 promoters and their epigenetic regulation by the UHRF1/PRMT5 complex in endometrial carcinoma.
Gynecol Oncol. 2016; 140(1):145-51 [PubMed] Related Publications
OBJECTIVE: Epigenetic changes in cancer and precancerous lesions could be utilized as biomarkers for cancer early detection. This study aims to investigate the novel biomarkers in endometrial carcinoma, and explore their epigenetic regulation.
METHODS: Methylation of six tumor suppressor genes (CDH13, SHP1, HIN1, DKK3, CTNNA1 and PCDH8) was evaluated in 155 endometrium samples. Changes of methylation and mRNA expression after treatment with 5-Aza-2'-deoxycytidine (5-Aza-CdR) or/and trichostatin A (TSA) were investigated by MSP and qRT-PCR respectively. Co-immunoprecipitation was used to detect the interactions between UHRF1 and PRMT5 proteins.
RESULTS: CDH13 and SHP1 promoters were highly methylated (81.36% and 86.44%, respectively) in endometrial carcinoma, while CDH13 promoter methylation was also present in complex hyperplasia and atypical hyperplasia (51.72% and 50.00%, respectively). Methylation of CDH13 and SHP1 promoters was associated with age and tumor differentiation or muscular infiltration depth. CDH13 and SHP1 promoters were completely methylated in endometrial carcinoma cell lines and were partially reversed by 5-Aza-CdR or TSA to induce mRNA levels (P<0.01). After combined treatment with these two agents, methylation of CDH13 and SHP1 promoters was completely reversed and expression of their mRNA was significantly increased (P<0.01). Moreover, PRMT5 could bind to UHRF1 and down-regulated by 5-Aza-CdR and/or TSA treatment (P<0.05).
CONCLUSIONS: Our data demonstrate for the first time that SHP1 methylation has high specificity for diagnosis of endometrial carcinoma, while CDH13 promoter methylation plays a role in the earlier stage. Furthermore, UHRF1 could form a complex with PRMT5 to contribute to the endometrial carcinogenesis.

Ho CM, Huang CJ, Huang SH, et al.
Demethylation of HIN-1 reverses paclitaxel-resistance of ovarian clear cell carcinoma through the AKT-mTOR signaling pathway.
BMC Cancer. 2015; 15:789 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Methylation of HIN-1 is associated with poor outcomes in patients with ovarian clear cell carcinoma (OCCC), which is regarded to be an aggressive, chemo-resistant histological subtype. This study aimed to evaluate whether 5-aza-2-deoxycytidine (5-aza-2-dC) can reverse methylation of the HIN-1 gene to restore chemo-sensitivity of OCCC and the possible mechanism.
METHODS: In vitro flow cytometric analysis and evaluation of caspase-3/7 activity of paclitaxel-sensitive and resistant OCCC cell lines were performed. Methylation status and expression changes of HIN-1 in the OCCC cell lines treated with 5-aza-2-dC were evaluated, and immunohistochemical staining of HIN-1 in OCCC tissues was performed. In vivo tumor growth with or without 5-aza-2-dC treatment was analyzed, and Western blotting of AKT-mTOR signaling-related molecules was performed.
RESULTS: G2-M phase arrest was absent in paclitaxel-resistant OCCC cells after treatment with the cytotoxic drug. The caspase activities of the chemo-resistant OCCC cells were lower than those of the chemo-sensitive OCCC cells when treated with paclitaxel. Methylation of HIN-1 was noted in paclitaxel-resistant OCCC cell lines and cancerous tissues. 5-aza-2-dC reversed the methylation of HIN-1, re-activated the expression of HIN-1, and then suppressed the in vivo tumor growth of paclitaxel-resistant OCCC cells. Immunoblotting revealed that phospho-AKT473 and phospho-mTOR were significantly increased in HIN-1-methylated paclitaxel-resistant OCCC cell lines. However, the expressions of phospho-AKT at Ser473 and Thr308 and phospho-mTOR decreased in the OCCC cells with a high expression of HIN-1.
CONCLUSIONS: Demethylating agents can restore the HIN-1 expression in paclitaxel-resistant OCCC cells through the HIN-1-AKT-mTOR signaling pathway to inhibit tumor growth.

Geybels MS, Zhao S, Wong CJ, et al.
Epigenomic profiling of DNA methylation in paired prostate cancer versus adjacent benign tissue.
Prostate. 2015; 75(16):1941-50 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: Aberrant DNA methylation may promote prostate carcinogenesis. We investigated epigenome-wide DNA methylation profiles in prostate cancer (PCa) compared to adjacent benign tissue to identify differentially methylated CpG sites.
METHODS: The study included paired PCa and adjacent benign tissue samples from 20 radical prostatectomy patients. Epigenetic profiling was done using the Infinium HumanMethylation450 BeadChip. Linear models that accounted for the paired study design and False Discovery Rate Q-values were used to evaluate differential CpG methylation. mRNA expression levels of the genes with the most differentially methylated CpG sites were analyzed.
RESULTS: In total, 2,040 differentially methylated CpG sites were identified in PCa versus adjacent benign tissue (Q-value < 0.001), the majority of which were hypermethylated (n = 1,946; 95%). DNA methylation profiles accurately distinguished between PCa and benign tissue samples. Twenty-seven top-ranked hypermethylated CpGs had a mean methylation difference of at least 40% between tissue types, which included 25 CpGs in 17 genes. Furthermore, for 10 genes over 50% of promoter region CpGs were hypermethylated in PCa versus benign tissue. The top-ranked differentially methylated genes included three genes that were associated with both promoter hypermethylation and reduced gene expression: SCGB3A1, HIF3A, and AOX1. Analysis of The Cancer Genome Atlas (TCGA) data provided confirmatory evidence for our findings.
CONCLUSIONS: This study of PCa versus adjacent benign tissue showed many differentially methylated CpGs and regions in and outside gene promoter regions, which may potentially be used for the development of future epigenetic-based diagnostic tests or as therapeutic targets.

Spitzwieser M, Holzweber E, Pfeiler G, et al.
Applicability of HIN-1, MGMT and RASSF1A promoter methylation as biomarkers for detecting field cancerization in breast cancer.
Breast Cancer Res. 2015; 17:125 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
INTRODUCTION: It has been shown in some articles that genetic and epigenetic abnormalities cannot only be found in tumor tissues but also in adjacent regions that appear histologically normal. This phenomenon is metaphorically called field cancerization or field defect. Field cancerization is regarded as clinically significant because it is assumed to be an important factor in local recurrence of cancer. As the field showing these molecular abnormalities may not be removed completely by surgery, these changes might lead to neoplasms and subsequent transformation to a tumor. We aimed to investigate the applicability of the methylation status of six tumor suppressor genes as biomarkers for detecting field cancerization in breast cancer.
METHODS: The promoter methylation status of CCND2, DAPK1, GSTP1, HIN-1, MGMT and RASSF1A was determined by methylation-sensitive high-resolution melting (MS-HRM) analysis. MS-HRM methods for CCND2, MGMT and RASSF1A were developed in-house, primer sequences for DAPK1, GSTP1 and HIN-1 have already been published. Biopsy samples were taken from tumor, tumor-adjacent and tumor-distant tissue from 17 breast cancer patients. Normal breast tissues of four healthy women served as controls.
RESULTS: All MS-HRM methods proved to be very sensitive. LODs were in the range from 0.1 to 1.5 %, LOQs ranged from 0.3 to 5.3 %. A total of 94 %, 82 % and 65 % of the tumors showed methylation of RASSF1A, HIN-1 and MGMT promoters, respectively. The methylation status of these promoters was significantly lower in tumor-distant tissues than in tumor tissues. Tumor-adjacent tissues showed higher methylation status of RASSF1A, HIN-1 and MGMT promoters than tumor-distant tissues, indicating field cancerization. The methylation status of the HIN-1 promoter in tumor-adjacent tissues was found to correlate strongly with that in the corresponding tumors (r = 0.785, p < 0.001), but not with that in the corresponding tumor-distant tissues (r = 0.312, p = 0.239).
CONCLUSIONS: Among the gene promoters investigated, the methylation status of the HIN-1 promoter can be considered the best suitable biomarker for detecting field cancerization. Further investigation is needed to test whether it can be used for defining surgical margins in order to prevent future recurrence of breast cancer.

Herranz M, Padín-Iruegas ME, Martínez-Lago N, et al.
HIN-1: a New Epigenetic Biomarker Crucial for Therapy Selection in Glioblastoma Multiforme.
Mol Neurobiol. 2016; 53(3):1802-1807 [PubMed] Related Publications
Glioblastoma multiforme (GBM) is the most common brain tumor in adults. The role of high in normal-1 (HIN-1) as a potential biomarker in combating this disease is being described for the first time in this study. A combination of O6-methylguanine DNA methyltransferase (MGMT) and HIN-1 methylation could be a possible biomarker in therapy choice. Interestingly, survival data shows a similar trend for the methylation of MGMT and for unmethylation of HIN-1 and vice versa. Eighty-eight paraffin-embedded brain tumors were analyzed to screen methylation rates of different genes and evaluate the association between genes methylation and clinicopathologic variables. Our study is the first of its kind to indicate that MGMT and HIN-1 methylation status are inverted (97.7% of methylated ones) and could be new markers in the study of GBM prognosis, especially in the therapy selection.

Hafez MM, Al-Shabanah OA, Al-Rejaie SS, et al.
Increased hypermethylation of glutathione S-transferase P1, DNA-binding protein inhibitor, death associated protein kinase and paired box protein-5 genes in triple-negative breast cancer Saudi females.
Asian Pac J Cancer Prev. 2015; 16(2):541-9 [PubMed] Related Publications
Triple negative breast cancer (TNBC) is an aggressive subtype of breast cancer (BC) with higher metastatic rate and both local and systemic recurrence compared to non-TNBC. The generation of reactive oxygen species (ROS) secondary to oxidative stress is associated with DNA damage, chromosomal degradation and alterations of both hypermethylation and hypomethylation of DNA. This study concerns differential methylation of promoter regions in specific groups of genes in TNBC and non-TNBC Saudi females in an effort to understand whether epigenetic events might be involved in breast carcinogenesis, and whether they might be used as markers for Saudi BCs. Methylation of glutathione S-transferase P1 (GSTP1), T-cadherin (CDH13), Paired box protein 5 (PAX5), death associated protein kinase (DAPK), twist-related protein (TWIST), DNA-binding protein inhibitor (ID4), High In Normal-1 (HIN-1), cyclin-dependent kinase inhibitor 2A (p16), cyclin D2 and retinoic acid receptor-β (RARβ1) genes was analyzed by methylation specific polymerase chain reaction (MSP) in 200 archival formalin- fixed paraffin embedded BC tissues divided into 3 groups; benign breast tissues (20), TNBC (80) and non-TNBC (100). The relationships between methylation status, and clinical and pathological characteristics of patients and tumors were assessed. Higher frequencies of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 hypermethylation were found in TNBC than in non-TNBC. Hypermethylation of GSTP1, CDH13, ID4, DAPK, HIN-1 and PAX5 increased with tumor grade increasing. Other statistically significant correlations were identified with studied genes. Data from this study suggest that increased hypermethylation of GSTP1, ID4, TWIST, DAPK, PAX5 and HIN-1 genes in TNBC than in non-TNBC can act as useful biomarker for BCs in the Saudi population. The higher frequency of specific hypermethylated genes paralleling tumor grade, size and lymph node involvement suggests contributions to breast cancer initiation and progression.

Conway K, Edmiston SN, May R, et al.
DNA methylation profiling in the Carolina Breast Cancer Study defines cancer subclasses differing in clinicopathologic characteristics and survival.
Breast Cancer Res. 2014; 16(5):450 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
INTRODUCTION: Breast cancer is a heterogeneous disease, with several intrinsic subtypes differing by hormone receptor (HR) status, molecular profiles, and prognosis. However, the role of DNA methylation in breast cancer development and progression and its relationship with the intrinsic tumor subtypes are not fully understood.
METHODS: A microarray targeting promoters of cancer-related genes was used to evaluate DNA methylation at 935 CpG sites in 517 breast tumors from the Carolina Breast Cancer Study, a population-based study of invasive breast cancer.
RESULTS: Consensus clustering using methylation (β) values for the 167 most variant CpG loci defined four clusters differing most distinctly in HR status, intrinsic subtype (luminal versus basal-like), and p53 mutation status. Supervised analyses for HR status, subtype, and p53 status identified 266 differentially methylated CpG loci with considerable overlap. Genes relatively hypermethylated in HR+, luminal A, or p53 wild-type breast cancers included FABP3, FGF2, FZD9, GAS7, HDAC9, HOXA11, MME, PAX6, POMC, PTGS2, RASSF1, RBP1, and SCGB3A1, whereas those more highly methylated in HR-, basal-like, or p53 mutant tumors included BCR, C4B, DAB2IP, MEST, RARA, SEPT5, TFF1, THY1, and SERPINA5. Clustering also defined a hypermethylated luminal-enriched tumor cluster 3 that gene ontology analysis revealed to be enriched for homeobox and other developmental genes (ASCL2, DLK1, EYA4, GAS7, HOXA5, HOXA9, HOXB13, IHH, IPF1, ISL1, PAX6, TBX1, SOX1, and SOX17). Although basal-enriched cluster 2 showed worse short-term survival, the luminal-enriched cluster 3 showed worse long-term survival but was not independently prognostic in multivariate Cox proportional hazard analysis, likely due to the mostly early stage cases in this dataset.
CONCLUSIONS: This study demonstrates that epigenetic patterns are strongly associated with HR status, subtype, and p53 mutation status and may show heterogeneity within tumor subclass. Among HR+ breast tumors, a subset exhibiting a gene signature characterized by hypermethylation of developmental genes and poorer clinicopathologic features may have prognostic value and requires further study. Genes differentially methylated between clinically important tumor subsets have roles in differentiation, development, and tumor growth and may be critical to establishing and maintaining tumor phenotypes and clinical outcomes.

Dai D, Dong XH, Cheng ST, et al.
Aberrant promoter methylation of HIN-1 gene may contribute to the pathogenesis of breast cancer: a meta-analysis.
Tumour Biol. 2014; 35(8):8209-16 [PubMed] Related Publications
We conducted the present meta-analysis of relevant cohort studies to evaluate whether promoter methylation of the high in normal-1 (HIN-1) gene contributes to breast cancer. The MEDLINE (1966 ~ 2013), Cochrane Library (Issue 12, 2013), EMBASE (1980 ~ 2013), CINAHL (1982 ~ 2013), Web of Science (1945 ~ 2013), and Chinese Biomedical (CBM) (1982 ~ 2013) databases were searched without any language restrictions. Meta-analyses were conducted using Stata software (version 12.0; Stata Corporation, College Station, TX, USA). Crude odds ratios (ORs) with their 95 % confidence interval (CI) were calculated. Nine clinical cohort studies that enrolled a total of 693 breast cancer patients were included in the meta-analysis. The results of our meta-analysis demonstrated that HIN-1 methylation frequency in cancer tissue was significantly higher than that of normal and benign tissues (cancer tissue vs. normal tissue: OR = 52.60, 95 % CI = 33.77 ~ 81.92, P < 0.001; cancer tissue vs. benign tissue: OR = 2.38, 95 % CI = 1.53 ~ 3.70, P < 0.001; respectively). Ethnicity-stratified analysis indicated that HIN-1 promoter methylation was correlated with the pathogenesis of breast cancer among both Asians and Caucasians (all P < 0.05). Our findings provide empirical evidence that aberrant HIN-1 promoter methylation may contribute to the pathogenesis of breast cancer. Thus, aberrant HIN-1 promoter methylation could be an independent and important biomarker used in predicting the prognosis and progression of breast cancer.

Vasiljević N, Scibior-Bentkowska D, Brentnall AR, et al.
Credentialing of DNA methylation assays for human genes as diagnostic biomarkers of cervical intraepithelial neoplasia in high-risk HPV positive women.
Gynecol Oncol. 2014; 132(3):709-14 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
OBJECTIVE: Testing for high risk human papillomavirus (HR-HPV) is increasing; however due to limitations in specificity there remains a need for better triage tests. Research efforts have focused recently on methylation of human genes which show promise as diagnostic classifiers.
METHODS: Methylation of 26 genes: APC, CADM1, CCND2, CDH13, CDKN2A, CTNNB1, DAPK1, DPYS, EDNRB, EPB41L3, ESR1, GSTP1, HIN1, JAM3, LMX1, MAL, MDR1, PAX1, PTGS2, RARB, RASSF1, SLIT2, SOX1, SPARC, TERT and TWIST1 was measured by pyrosequencing in cytology specimens from a pilot set of women with normal or cervical intraepithelial neoplasia grade 3 (CIN3) histology. Six genes were selected for testing in Predictors 1, a colposcopy referral study comprising 799 women. The three genes EPB41L3, DPYS and MAL were further tested in a second colposcopy referral study, Predictors 2, comprising 884 women.
RESULTS: The six genes selected from the pilot: EPB41L3, EDNRB, LMX1, DPYS, MAL and CADM1 showed significantly elevated methylation in CIN2 and CIN3 (CIN2/3) versus ≤CIN1 in Predictors 1 (p<0.01). Highest methylation was observed in cancer tissues. EPB41L3 methylation was the best single classifier of CIN2/3 in both HR-HPV positive (p<0.0001) and negative samples (p=0.02). Logistic regression modeling showed that other genes did not add significantly to EPB41L3 and in Predictors 2, its classifier value was validated with AUC 0.69 (95% CI 0.65-0.73).
CONCLUSION: Several methylated genes show promise for detecting CIN2/3 of which EPB41L3 seems the best. Methylated human gene biomarkers used in combination may be clinically useful for triage of women with HR-HPV infections.

Bignotti E, Tassi RA, Calza S, et al.
Secretoglobin expression in ovarian carcinoma: lipophilin B gene upregulation as an independent marker of better prognosis.
J Transl Med. 2013; 11:162 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: The aim of the present study was to investigate within ovarian carcinoma and normal ovarian biopsies the gene expression of multiple secretoglobin family members relative to mammaglobin B, which we previously reported as a promising novel ovarian carcinoma prognostic marker.
METHODS: Using quantitative real-time Reverse Transcription PCR we tested 53 ovarian carcinoma and 30 normal ovaries for the expression of 8 genes belonging to the secretoglobin family: mammaglobin A, lipophilin A, lipophilin B, uteroglobin, HIN-1, UGRP-1, RYD5 and IIS. Next, we decided to expand the LipB gene expression analysis to a further 48 ovarian carcinoma samples, for a total of 101 tumor tissues of various histologies and to study its protein expression by immunohistochemistry in formalin-fixed paraffin-embedded tumors and normal ovaries. Finally, we correlated lipophilin B gene and protein expression to conventional patient clinico-pathological features and outcome.
RESULTS: We found significant mammaglobin A, lipophilin A, lipophilin B and RYD5 gene overexpression in ovarian carcinomas compared to normal ovaries. Lipophilin B mRNA showed a higher presence in tumors (75.4%) compared to normal ovaries (16.6%) and the most significant correlation with mammaglobin B mRNA (rs =0.77, p < 0.001). By immunohistochemical analysis, we showed higher lipophilin B expression in the cytoplasm of tumor cells compared to normal ovaries (p < 0.001). Moreover, lipophilin B gene overexpression was significantly associated with serous histology (serous vs clear cell p = 0.027; serous vs undifferentiated p = 0.007) and lower tumor grade (p = 0.02). Lower LipB mRNA levels (low versus high tertiles) were associated to a shorter progression-free (p = 0.03, HR = 2.2) and disease-free survival (p = 0.02, HR = 2.5) by univariate survival analysis and, importantly, they remain an independent prognostic marker for decreased disease-free (p = 0.001, HR = 3.9) and progression-free survival (p = 0.004, HR = 2.8) in multivariate Cox regression analysis.
CONCLUSIONS: The present study represents the first quantitative evaluation of secretoglobin gene expression in normal and neoplastic ovarian tissues. Our results demonstrate lipophilin B gene and protein upregulation in ovarian carcinoma compared to normal ovary. Moreover, lipophilin B gene overexpression correlates with a less aggressive tumor phenotype and represents a novel ovarian carcinoma prognostic factor.

Twelves D, Nerurkar A, Osin P, et al.
DNA promoter hypermethylation profiles in breast duct fluid.
Breast Cancer Res Treat. 2013; 139(2):341-50 [PubMed] Related Publications
DNA methylation of tumor-suppressor genes occurs early in the molecular transformation of precursor events to breast cancer and is therefore of interest to screening in high-risk women. The aim of this study was to use tumor-suppressor genes that have previously been shown to be cancer predictive in tissue to evaluate the potential of DNA methylation assays in cells from duct lavage (DL) fluid. The frequency of target gene DNA methylation in tissue and DL of cancer and healthy control patients was assessed, and an association of DNA methylation between different duct systems in the same breast was explored. The cancer and control groups were identified in the outpatient clinic when surgical treatment was finalized. Tumor, adjacent tissue and bilateral DL samples for comparative DNA methylation studies were obtained during surgery from women with cancer. In the healthy control group, samples of tissue and DL were collected. Reverse transcriptase methylation-specific PCR was conducted on modified DNA purified from 42 cancer biopsies, 41 benign excision cavity biopsies (internal control), 29 benign biopsies (external control), and 119 DL specimens. A validated panel of cancer predictive genes was analyzed in the study bank of tissue and DL samples from cancer and healthy patients. The sensitivity of DNA methylation in DL samples compared with matched cancer tissue was highest for SCGB3A1 (90 %), CDH13 (91 %), and RARB (83 %). The genetic algorithm selected RASSF1A, RARB, and IGFBP7 as the optimum predictor set for detecting DNA methylation in cancer tissue. The optimum area under the ROC curve for DNA methylation in cancer compared with internal control healthy tissue from excision margins was 0.84. The area under the ROC curve for DNA methylation in cancer DL compared with contralateral benign DL was 0.76. DL cytology was not a helpful predictor of breast cancer. This study shows that relative patterns of tumor-suppressor gene hypermethylation in breast cancer tissue are significantly reflected in the DL from the cancer affected breast. Using DL, nonconcordant patterns of DNA methylation between different duct systems confer independent oncologic potential for distinct breast lobes. The approach of DNA methylation in DL may be substantiated by a larger trial of breast cancer biomarkers.

García-Baquero R, Puerta P, Beltran M, et al.
Methylation of a novel panel of tumor suppressor genes in urine moves forward noninvasive diagnosis and prognosis of bladder cancer: a 2-center prospective study.
J Urol. 2013; 190(2):723-30 [PubMed] Related Publications
PURPOSE: Changes in DNA methylation of tumor suppressor genes early in carcinogenesis represent potential indicators of cancer detection and disease evolution. We examined the diagnostic, stratification and prognostic biomarker roles in urine of the methylation of a novel panel of tumor suppressor genes in bladder cancer.
MATERIAL AND METHODS: We evaluated the methylation of 18 tumor suppressor genes in 2 prospective, independent sets of urine samples (training set of 120 preparations and validation set of 128) from patients with bladder cancer (170) and controls (78) using methylation specific multiplex ligation-dependent probe amplification. Diagnostic performance was evaluated with ROC curves. Recurrence, progression and disease specific survival were analyzed using univariate and multivariate Cox models.
RESULTS: PRDM2, HLTF, ID4, DLC1, BNIP3, H2AFX, CACNA1G, TGIF and CACNA1A were methylated in bladder cancer. CCND2, SCGB3A1, BNIP3, ID4 and RUNX3 were the most frequently methylated tumor suppressor genes in each urine set. Methylation of several tumor suppressor genes correlated with clinicopathological variables, such as stage, tumor grade, focality or age. ROC analysis revealed significant diagnostic accuracy for RUNX3 and CACNA1A in the training set, and for RUNX3 and ID4 in the validation set. On univariate and multivariate analysis CACNA1A methylation correlated with recurrence in the training set, while in the validation set PRDM2 and BNIP3 were significantly associated with recurrence and disease specific survival, respectively.
CONCLUSIONS: Tumor suppressor gene methylation allowed for histopathological and clinical stratification. Urine methylation has noninvasive usefulness not only for diagnostic assessment but also as independent bladder cancer prognosticators.

Verschuur-Maes AH, de Bruin PC, van Diest PJ
Epigenetic progression of columnar cell lesions of the breast to invasive breast cancer.
Breast Cancer Res Treat. 2012; 136(3):705-15 [PubMed] Related Publications
Promoter hypermethylation of several tumour suppressor genes often occurs during breast carcinogenesis, but little is known about epigenetic silencing in the possible precursor columnar cell lesion (CCL). Promoter hypermethylation of 50 different tumour suppressor genes was assessed in normal breast tissue (N = 10), CCL (N = 15), ductal carcinoma in situ (DCIS) grade I originating in CCL (N = 5) and paired CCL (N = 15) with DCIS (N = 7) and/or invasive carcinoma (N = 14) by Methylation-specific multiplex ligation-dependent probe amplification. Increasing mean cumulative methylation levels were found from normal breast tissue to CCL to DCIS and invasive carcinoma (P < 0.001) with similar methylation levels in DCIS and invasive carcinoma. Methylation levels and frequencies (in the overall analysis and analysis of only the synchronous lesions) were the highest for RASSF1, CCND2, ID4, SCGB3A1 and CDH13. The methylation levels of ID4, CCND2, and CDH13 increased significantly from normal breast tissue to CCL and to DCIS/invasive carcinoma. RASSF1, SCGB3A1 and SFRP5 had significant higher methylation levels in CCL compared to normal breast tissue, but showed no significant differences between CCL, DCIS and invasive carcinoma. Also, no difference was found between CCLs with and without atypia, or CCLs with or without synchronous cancer. In conclusion, promoter hypermethylation for several established tumour suppressor genes is already present in CCLs, underlining that promoter hypermethylation is an early event in breast carcinogenesis. Atypia in CCL or the presence of synchronous more advanced lesions does not seem to be accompanied by higher methylation levels.

Kim GE, Kweon SS, Lee JS, et al.
Quantitative assessment of DNA methylation for the detection of cervical and endometrial adenocarcinomas in liquid-based cytology specimens.
Anal Quant Cytopathol Histpathol. 2012; 34(4):195-203 [PubMed] Related Publications
OBJECTIVE: To investigate the aberrant promoter hypermethylation as a screening tool for cervical adenocarcinomas (CAs) and endometrial adenocarcinomas (EAs) in cervical scrapings.
STUDY DESIGN: A quantitative multiplex methylation-specific polymerase chain reaction approach was used to examine promoter methylation of 5 genes (APC, HIN-1, RAR-beta, RASSF1A and Twist) in biopsy-confirmed CA (n = 31) and EA (n = 27) residual, liquid-based cytology samples. The data of negative for intraepithelial lesions or malignancy and low-grade squamous intraepithelial lesions were used as controls.
RESULTS: Methylation levels of APC, RAR-beta, RASSF1A and Twist were significantly higher in CA than in control cervical samples. For EA, only the methylation levels of RASSF1A differed significantly from those of control. Receiver-operating characteristic analysis demonstrated that APC, RAR-beta and RASSF1A had the ability to distinguish CA/EA, CA and EA from control samples. In CA/EA and CA samples, the best 3-gene combination was RASSF1A/RAR-beta/APC. This 3-gene panel had a sensitivity of 87.0% for CA/EA and of 80.6% for CA and a specificity of 79.3% for both CA/EA and CA. In EA samples, RASSF1A showed the best performance in distinguishing EA from control. The estimated sensitivity of RASSF1A for detecting EA was 63.0%, and its specificity was 96.3%.
CONCLUSION: This feasibility study demonstrates that quantitative detection of aberrant DNA methylation in cervical scrapings may be a promising new diagnostic tool for the detection of CA and EA.

Sturgeon SR, Balasubramanian R, Schairer C, et al.
Detection of promoter methylation of tumor suppressor genes in serum DNA of breast cancer cases and benign breast disease controls.
Epigenetics. 2012; 7(11):1258-67 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Tumors are capable of shedding DNA into the blood stream. This shed DNA may be recovered from serum or plasma. The objective of this study was to evaluate whether pyrosequencing promoter DNA in a panel of 12 breast cancer-related genes (APC, BRCA1, CCND2, CDH1, ESR1, GSTP1, HIN1, P16, RARβ, RASSF1, SFRP1 and TWIST) to measure the degree of methylation would lead to a useful serum-based marker of breast cancer. Serum was obtained from women who were about to undergo a breast biopsy or mastectomy at three hospitals from 1977 to 1987 in Grand Rapids, MI USA. We compared the methylation status of 12 genes in serum DNA obtained from three groups of postmenopausal women (mean age at blood collection: 63.0 y; SD 9.9; range 35-91): breast cancer cases with lymph node-positive disease (n = 241); breast cancer cases with lymph node-negative disease (n = 63); and benign breast disease control subjects (n = 234). Overall, median levels of promoter methylation were low, typically below 5%, for all genes in all study groups. For all genes, median levels of methylation were higher (by 3.3 to 47.6%) in lymph node-positive breast cancer cases than in the controls. Comparing mean methylation level between lymph-node positive cases and controls, the most statistically significant findings, after adjustment of the false-positive rate (q-value), were for TWIST (p = 0.04), SFRP1 (p = 0.16), ESR1 (p = 0.17), P16 (p = 0.19) and APC (p = 0.19). For two of these four genes (TWIST, P16), the median methylation level was also highest in lymph-node positive cases, intermediate in lymph node-negative cases and lowest in the controls. The percent of study subjects with mean methylation scores ≥ 5% was higher among lymph node-positive cases than controls for ten genes, and significantly higher for HIN1 and TWIST (22.0 vs. 12.2%, p = 0.04 and 37.9 vs. 24.5%, p = 0.004, respectively). Despite relatively consistent variation in methylation patterns among groups, these modest differences did not provide sufficient ability to distinguish between cases and controls in a clinical setting.

Ho CM, Huang CJ, Huang CY, et al.
Promoter methylation status of HIN-1 associated with outcomes of ovarian clear cell adenocarcinoma.
Mol Cancer. 2012; 11:53 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
BACKGROUND: This study is to analyze promoter methylation of various tumor suppressor genes in different types of ovarian carcinoma and to identify potential therapeutic targets of ovarian clear cell adenocarcinoma (OCCA).
MATERIALS AND METHODS: The promoter methylation statuses of 40 genes in primary ovarian carcinomas including 47 clear- and 63 non-clear-cell type tissues, 6 OCCA cell lines, 29 benign ovarian endometriotic cysts, and 31 normal controls were analyzed by methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA). The MS-MLPA results were correlated with clinicopathological features and outcomes of 47 OCCA patients. Functions of the target genes were further explored by Western Blot Analysis, apoptosis assay, and caspase-3/7 activity analysis.
RESULTS: Frequencies of methylated RASSF1A, CDH13, CACNA1A, HIN-1, and sFRP5 genes in OCCA tissues were significantly higher than those in non-OCCA cancerous tissues and benign endometriotic cysts. The expected OS for patients with methylated promoters of HIN-1 was significantly worse than those for patients without methylated HIN-1 (30% vs. 62%, p = 0.002). The HIN-1 gene was over-expressed in ES2 cells, a significant reduction in cell growth and induction of apoptosis, and increasing paclitaxel sensitivity by reducing phosphorylation of Akt were observed.
CONCLUSIONS: Methylation of HIN-1 promoter is a novel epigenetic biomarker associated with poor outcomes in OCCA patients. Ectopic expression of the HIN-1 gene increased paclitaxel sensitivity which is partly through Akt pathway.

Gu S, Tian Y, Chlenski A, et al.
Valproic acid shows a potent antitumor effect with alteration of DNA methylation in neuroblastoma.
Anticancer Drugs. 2012; 23(10):1054-66 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Epigenetic aberrations and a CpG island methylator phenotype are associated with poor outcome in children with neuroblastoma (NB). Previously, we have shown that valproic acid (VPA), a histone deacetylase (HDAC) inhibitor, exerts antitumor effects in an NB xenograft model. However, the underlying antitumor molecular mechanisms are largely unknown. In this study, we examined the role of HDAC in cell proliferation, cell cycle progression, gene expression patterns, and epigenome in NB. Cell proliferation, cell cycle progression, caspase activity, RNA and protein expression, quantitative methylation, and global DNA methylation were examined in NBL-W-N and LA1-55n NB cell lines. Our studies showed that inhibition of HDAC decreased NB proliferation, and induced caspase activity and G1 growth arrest. Expression patterns of cancer-related genes were modulated by VPA. The expression of THBS1, CASP8, SPARC, CDKN1A, HIC1, CDKN1B, and HIN1 was upregulated, and that of MYCN and TIG1 was downregulated. HDAC inhibition decreased methylation levels of THBS1 and RASSF1A promoters. Inhibition of HDAC increased acetylation of histone 4 and overall DNA methylation levels. Our studies showed that inhibition of HDAC blocked cell proliferation and cell cycle progression in relation to alteration in cancer-related genes, increased overall DNA methylation, and decreased methylation of tumor suppressor genes. Further studies examining the antitumor effects of VPA in NB are warranted.

Fonseca AL, Kugelberg J, Starker LF, et al.
Comprehensive DNA methylation analysis of benign and malignant adrenocortical tumors.
Genes Chromosomes Cancer. 2012; 51(10):949-60 [PubMed] Related Publications
The molecular pathogenesis of benign and malignant adrenocortical tumors (ACT) is incompletely clarified. The role of DNA methylation in adrenocortical tumorigenesis has not been analyzed in an unbiased, systematic fashion. Using the Infinium HumanMethylation27 BeadChip, the DNA methylation levels of 27,578 CpG sites were investigated in bisulfite-modified DNA from 6 normal adrenocortical tissue samples, 27 adrenocortical adenomas (ACA), and 15 adrenocortical carcinomas (ACC). Genes involved in cell cycle regulation, apoptosis, and transcriptional regulation of known or putative importance in the development of adrenal tumors showed significant and frequent hypermethylation. Such genes included CDKN2A, GATA4, BCL2, DLEC1, HDAC10, PYCARD, and SCGB3A1/HIN1. Comparing benign versus malignant ACT, a total of 212 CpG islands were identified as significantly hypermethylated in ACC. Gene expression studies of selected hypermethylated genes (CDKN2A, GATA4, DLEC1, HDAC10, PYCARD, SCGB3A1/HIN1) in 6 normal and 16 neoplastic adrenocortical tissues (10 ACA and 6 ACC), displayed reduced gene expression in benign and malignant ACT versus normal adrenocortical tissue. Treatment with 5-aza-2'-deoxycytidine of adrenocortical cancer H-295R cells increased expression of the hypermethylated genes CDKN2A, GATA4, DLEC1, HDAC10, PYCARD, and SCGB3A1/HIN1. In conclusion, the current study represents the first unbiased, quantitative, genome-wide study of adrenocortical tumor DNA methylation. Genes with altered DNA methylation patterns were identified of putative importance to benign and malignant adrenocortical tumor development.

Wang S, Dorsey TH, Terunuma A, et al.
Relationship between tumor DNA methylation status and patient characteristics in African-American and European-American women with breast cancer.
PLoS One. 2012; 7(5):e37928 [PubMed] Article available free on PMC after 07/01/2020 Related Publications
Aberrant DNA methylation is critical for development and progression of breast cancer. We investigated the association of CpG island methylation in candidate genes and clinicopathological features in 65 African-American (AA) and European-American (EA) breast cancer patients. Quantitative methylation analysis was carried out on bisulfite modified genomic DNA and sequencing (pyrosequencing) for promoter CpG islands of p16, ESR1, RASSF1A, RARβ2, CDH13, HIN1, SFRP1 genes and the LINE1 repetitive element using matched paired non-cancerous and breast tumor specimen (32 AA and 33 EA women). Five of the genes, all known tumor suppressor genes (RASSF1A, RARβ2, CDH13, HIN1 and SFRP1), were found to be frequently hypermethylated in breast tumor tissues but not in the adjacent non-cancerous tissues. Significant differences in the CDH13 methylation status were observed by comparing DNA methylation between AA and EA patients, with more obvious CDH13 methylation differences between the two patient groups in the ER- disease and among young patients (age<50). In addition, we observed associations between CDH13, SFRP1, and RASSF1A methylation and breast cancer subtypes and between SFRP1 methylation and patient's age. Furthermore, tumors that received neoadjuvant therapy tended to have reduced RASSF1A methylation when compared with chemotherapy naïve tumors. Finally, Kaplan Meier survival analysis showed a significant association between methylation at 3 loci (RASSF1A, RARβ2 and CDH13) and reduced overall disease survival. In conclusion, the DNA methylation status of breast tumors was found to be significantly associated with clinicopathological features and race/ethnicity of the patients.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. SCGB3A1, Cancer Genetics Web: http://www.cancer-genetics.org/SCGB3A1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999