MXD1

Gene Summary

Gene:MXD1; MAX dimerization protein 1
Aliases: MAD, MAD1, BHLHC58
Location:2p13.3
Summary:This gene encodes a member of the MYC/MAX/MAD network of basic helix-loop-helix leucine zipper transcription factors. The MYC/MAX/MAD transcription factors mediate cellular proliferation, differentiation and apoptosis. The encoded protein antagonizes MYC-mediated transcriptional activation of target genes by competing for the binding partner MAX and recruiting repressor complexes containing histone deacetylases. Mutations in this gene may play a role in acute leukemia, and the encoded protein is a potential tumor suppressor. Alternatively spliced transcript variants encoding multiple isoforms have been observed for this gene. [provided by RefSeq, Feb 2011]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Protein:max dimerization protein 1
Source:NCBIAccessed: 01 September, 2019

Ontology:

What does this gene/protein do?
Show (12)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 01 September 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Transfection
  • Promoter Regions
  • Protein Binding
  • Telomerase
  • Proto-Oncogene Proteins c-myc
  • myc Genes
  • Tumor Suppressor Gene
  • Antineoplastic Agents
  • Signal Transduction
  • Cell Division
  • Biological Models
  • Cancer Gene Expression Regulation
  • Vorinostat
  • RTPCR
  • Transcription
  • Succinate Dehydrogenase
  • Cell Differentiation
  • Transforming Growth Factor beta
  • Basic Helix-Loop-Helix Leucine Zipper Transcription Factors
  • MicroRNAs
  • Sequence Homology
  • Base Sequence
  • Apoptosis
  • Chromosome 2
  • Drug Resistance
  • Gene Expression Regulation
  • Neoplastic Cell Transformation
  • Molecular Sequence Data
  • Amino Acid Sequence
  • Neoplasm Proteins
  • Tumor Suppressor Proteins
  • Cell Cycle
  • Upstream Stimulatory Factors
  • Basic-Leucine Zipper Transcription Factors
  • Cell Proliferation
  • DNA-Binding Proteins
  • Trans-Activators
  • Transcription Factors
  • Polymerase Chain Reaction
  • Repressor Proteins
Tag cloud generated 01 September, 2019 using data from PubMed, MeSH and CancerIndex

Latest Publications: MXD1 (cancer-related)

Wu TK, Chen CH, Pan YR, et al.
Cetrimonium Bromide Inhibits Cell Migration and Invasion of Human Hepatic SK-HEP-1 Cells Through Modulating the Canonical and Non-canonical TGF-β Signaling Pathways.
Anticancer Res. 2019; 39(7):3621-3631 [PubMed] Related Publications
BACKGROUND/AIM: Cetrimonium bromide (CTAB), a quaternary ammonium surfactant, is an antiseptic agent against bacteria and fungi. However, the mechanisms by which its pharmacological actions affect epithelial-mesenchymal transition (EMT) in hepatocellular carcinoma (HCC) cells, such as adenocarcinoma in SK-HEP-1 cells, have not been investigated. We, thereby, investigated whether CTAB inhibits cellular mobility and invasiveness of human hepatic adenocarcinoma in SK-HEP-1 cells.
MATERIALS AND METHODS: SK-HEP-1 cells were treated with CTAB, and subsequent migration and invasion were measured by wound healing and transwell assays. Protein expression was detected by immunoblotting analysis.
RESULTS: Our data revealed that treatment of SK-HEP-1 cells with CTAB altered their mesenchymal spindle-like morphology. CTAB exerted inhibitory effects on the migration and invasion of SK-HEP-1 cells dose-dependently, and reduced protein levels of matrix metalloproteinase-2 (MMP-2), MMP-9, snail, slug, twist, vimentin, fibronectin, N-cadherin, Smad2, Smad3, Smad4, phosphoinositide-3-kinase (PI3K), p-PI3K, Akt, p-Akt, β-catenin, mammalian target of rapamycin (mTOR), p-mTOR, p-p70S6K, p-extracellular signal-regulated kinases (ERK)1/2, p-p38 mitogen-activated protein kinase (MAPK) and p-c-Jun N-terminal kinase (JNK), but increased protein levels of tissue inhibitor matrix metalloproteinase-1 (TIMP-1), TIMP-2, claudin-1 and p-GSK3β. Based on these observations, we suggest that CTAB not only inhibits the canonical transforming growth factor-β (TGF-β) signaling pathway though reducing SMADs (an acronym from the fusion of Caenorhabditis elegans Sma genes and the Drosophila Mad, Mothers against decapentaplegic proteins), but also restrains the non-canonical TGF-β signaling including MAPK pathways like ERK1/2, p38 MAPK, JNK and PI3K.
CONCLUSION: CTAB is involved in the suppression of TGF-β-mediated mesenchymal phenotype and could be a potent medical agent for use in controlling the migration and invasion of hepatic adenocarcinoma.

Huan C, Jin L, Heng W, et al.
MXD1 regulates the imatinib resistance of chronic myeloid leukemia cells by repressing BCR-ABL1 expression.
Leuk Res. 2018; 75:1-6 [PubMed] Related Publications
Tyrosine kinase inhibitors have achieved unprecedented efficacy in the treatment of chronic myeloid leukemia (CML); however, imatinib resistance has emerged as a major problem in the clinic. Because the overexpression of BCR-ABL1 critically contributes to CML pathogenesis and drug resistance, targeting the regulation of BCR-ABL1 gene expression may be an alternative therapeutic strategy. In this study, we found that the transcriptional repressor MXD1 showed low expression in CML patients and was negatively correlated with BCR-ABL1. Overexpression of MXD1 markedly inhibited the proliferation of K562 cells and sensitized the imatinib-resistant K562/G01 cell line to imatinib, with decreased BCR-ABL1 mRNA and protein expression. Further investigation using reporter gene analysis showed that MXD1 significantly inhibited the transcriptional activity of the BCR-ABL1 gene promoter. Taken together, these data show that MXD1 functions as a negative regulator of BCR-ABL1 expression and subsequently inhibits proliferation and sensitizes CML cells to imatinib treatment.

Guo X, Dai X, Ni J, et al.
Geraniin Differentially Modulates Chromosome Stability of Colon Cancer and Noncancerous Cells by Oppositely Regulating their Spindle Assembly Checkpoint.
Environ Mol Mutagen. 2019; 60(3):254-268 [PubMed] Related Publications
Geraniin has been reported to specifically induce apoptosis in multiple human cancers, but the underlying mechanism is poorly defined. The spindle assembly checkpoint (SAC) is a surveillance system to ensure high-fidelity chromosome segregation during mitosis. Weakening of SAC to enhance chromosome instability (CIN) can be therapeutic because very high levels of CIN are lethal. In this study, we have investigated the effects of geraniin on the SAC of colorectal cancer HCT116 cells and noncancerous colon epithelial CCD841 cells. We find that treatment of HCT116 cells with geraniin leads to dose-dependent decrease of cell proliferation, colony formation, and anchorage-independent growth. Geraniin is found to induce apoptosis in mitotic and postmitotic HCT116 cells. Furthermore, geraniin weakens the SAC function of HCT116 cells by decreasing the transcriptional expression of several SAC kinases (particularly Mad2 and Bub1), which in turn leads to premature anaphase entry, mitotic aberrations, and CIN in HCT116 cells. In contrast, the proliferation of CCD841 cells is slightly inhibited by geraniin. Even more interestingly, geraniin increases the transcriptional expression of several SAC kinases (e.g., Mad1 and BubR1) to strengthen SAC efficiency, which contributes to the reduction of mitotic aberrations and CIN in CCD841 cells. Altogether, our findings reveal that the SAC pathway in human colon cancer and noncancerous cell lineages responses oppositely to geraniin treatment, resulting CIN promotion and suppression, respectively. Specific abrogation of SAC to induce catastrophic CIN in HCT116 cells may account for the selective anticancer action of geraniin.. Environ. Mol. Mutagen. 60:254-268, 2019. © 2018 Wiley Periodicals, Inc.

Cao L, Xu C, Xiang G, et al.
AR-PDEF pathway promotes tumour proliferation and upregulates MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative breast cancer.
Mol Cancer. 2018; 17(1):136 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Androgen receptor (AR) is expressed in 60%~ 70% oestrogen receptor (ER)-negative breast cancer (BC) cases and promotes the growth of this cancer subtype. Expression of prostate-derived Ets factor (PDEF), a transcription factor, is highly restricted to epithelial cells in hormone-regulated tissues. MYC and its negative regulator MAD1 play an important role in BC progression. Previously, we found that PDEF expression is strongly correlated with AR expression. However, the relationship between AR and PDEF and the function of PDEF in ER-negative BC proliferation are unclear.
METHODS: AR and PDEF expression in ER-negative BC tissues and cell lines was determined by performing immunohistochemistry or western blotting. Protein expression levels and location were analysed by performing western blotting, RT-qPCR and immunofluorescence staining. Co-immunoprecipitation and chromatin immunoprecipitation assays were performed to validate the regulation of AR-PDEF-MAD1-MYC axis. Moreover, the effect of AR and PDEF on BC progression was investigated both in vitro and in vivo.
RESULTS: We found that PDEF was overexpressed in ER-negative BC tissues and cell lines and appeared to function as an oncogene. PDEF expression levels were strongly correlated with AR expression in ER-negative BC, and PDEF transcription was positively regulated by AR. PDEF upregulated MYC-mediated gene transcription by promoting MAD1 degradation in ER-negative BC. Finally, we found that compared with the inhibition of AR expression alone, simultaneous inhibition of AR and PDEF expression further suppressed tumour proliferation both in vitro and in vivo.
CONCLUSIONS: Our data highlight the role of the AR-PDEF-MAD1-MYC axis in BC progression and suggest that PDEF can be used as a new clinical therapeutic target for treating ER-negative BC.

Shen C, Chen F, Wang H, et al.
The Pinx1 Gene Downregulates Telomerase and Inhibits Proliferation of CD133+ Cancer Stem Cells Isolated from a Nasopharyngeal Carcinoma Cell Line by Regulating Trfs and Mad1/C-Myc/p53 Pathways.
Cell Physiol Biochem. 2018; 49(1):282-294 [PubMed] Related Publications
BACKGROUND/AIMS: Cancer stem cells (CSCs) are important factors for the continuous growth, recurrence, and metastasis of malignant tumors. They are responsible for the ineffectiveness of traditional radiotherapy and chemotherapy toward malignant tumors. Currently, stem cells or side-population cells have been isolated from many cancer cell lines and malignant tumor tissues, including nasopharyngeal carcinoma. Exploring the biological characteristics of CSCs for CSC-targeted therapy has gained importance. CSCs possess higher telomerase activity; thus, the use of the gene encoding telomerase inhibitor PinX1 gene to target telomerase in CSCs and inhibit proliferation, invasion, and metastasis of CSCs has become an important means for the treatment of malignant tumors. PinX1 may regulate complex pathways, including TRF1, Mad1/c-Myc, and p53.
METHODS: In this study, nasopharyngeal CD133+ CSCs were sorted using CD133 immunomagnetic beads by flow cytometry The successful isolation of CD133+ CSCs was confirmed by examining their surface markers, namely CD44, NaNOG, and SOX2 as well as their ability to undergo in vivo tumorigenesis and in vitro sphere formation, proliferation, migration, and invasion. In addition, CD133+ CSCs were transfected with the constructed PinX1 overexpression plasmid or siRNA and the resulting effects on their proliferation, migration, invasion, and apoptosis were detected using cell counting kit-8 (CCK-8), transwell assay, and scratch test, respectively. Furthermore, their effects on mRNA and protein levels of TRF1, TRF2, Mad1, c-Myc, and p53 were examined using quantitative real-time PCR and western blot, respectively.
RESULTS: The overexpression of PinX1 in CD133+ CSCs significantly decreased hTERT (P < 0.001), inhibited proliferation, migration, and invasion, induced apoptosis, and significantly decreased c-Myc mRNA levels (P < 0.001), while it increased TRF1, Mad1, and p53 mRNA levels (all P < 0.001). On the other hand, PinX1 silencing in CD133+ CSCs significantly decreased TRF1, Mad1, and p53 mRNA levels (all P < 0.01), while it increased hTERT and c-Myc mRNA levels (all P < 0.05).
CONCLUSION: These results indicate that PinX1 downregulates telomerase activity in CD133+ CSCs, inhibits its proliferation, migration, and invasion, and induces apoptosis possibly through TRF1, Mad1/c-Myc, and p53-mediated pathways.

Tirosh A, Valdés N, Stratakis CA
Genetics of micronodular adrenal hyperplasia and Carney complex.
Presse Med. 2018 Jul - Aug; 47(7-8 Pt 2):e127-e137 [PubMed] Related Publications
Micronodular bilateral adrenal hyperplasia (MiBAH) is a rare cause of adrenal Cushing syndrome (CS). The investigations carried out on this disorder during the last two decades suggested that it could be divided into at least two entities: primary pigmented nodular adrenocortical disease (PPNAD) and isolated micronodular adrenocortical disease (i-MAD). The most common presentation of MiBAH is familial PPNAD as part of Carney complex (CNC) (cPPNAD). CNC, associated with multiple endocrine and non-endocrine neoplasias, was first described in 1985 in 40 patients, 10 of whom were familial cases. In 2000, we identified inactivating germline mutations of the PRKAR1A gene, encoding the regulatory subunit type 1α (RIα) of protein kinase A (PKA), in the majority of patients with CNC and PPNAD. PRKAR1A mutations causing CNC lead to increased PKA activity. Since then, additional genetic alterations in the cAMP/PKA signaling pathway leading to increased PKA activity have been described in association with MiBAH. This review summarizes older and recent findings on the genetics and pathophysiology of MiBAH, PPNAD, and related disorders.

Ji ZM, Yang LL, Ni J, et al.
Silencing Filamin A Inhibits the Invasion and Migration of Breast Cancer Cells by Up-regulating 14-3-3σ.
Curr Med Sci. 2018; 38(3):461-466 [PubMed] Related Publications
Filamin A and 14-3-3-σ are closely associated with the development of breast cancer. However, the exact relationship between them is still unknown. The present study aimed to examine the interaction of filamin A with 14-3-3-σ in the invasion and migration of breast cancer. RNA interference technology was employed to silence filamin A in MDA-MB-231 cells. Real-time PCR and Western blotting were used to detect the expression of filamin A and 14-3-3-σ at mRNA and protein levels, respectively. Double immunofluorescence was applied to show their colocalization morphologically. Wound healing assay and Trans-well assay were used to testify the migration and invasion of MDA-MB-231 cells in filamin A-silenced cells. The results showed that silencing filamin A significantly increased the mRNA and protein levels of 14-3-3σ. In addition, double immunofluorescence displayed that filamin A and 14-3-3σ were predominantly colocalized in the cytoplasm of MDA-MB-231 cells. Silencing filamin A led to the enhanced fluorescence of 14-3-3σ. Furthermore, cell functional experiments showed that silencing filamin A inhibited the migration and invasion of MDA-MB-231 cells in vitro. In conclusion, silencing filamin A may inhibit the invasion and migration of breast cancer cells by upregulating 14-3-3σ.

Zacharias M, Brcic L, Eidenhammer S, Popper H
Bulk tumour cell migration in lung carcinomas might be more common than epithelial-mesenchymal transition and be differently regulated.
BMC Cancer. 2018; 18(1):717 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Epithelial-to-mesenchymal transition (EMT) is one mechanism of carcinoma migration, while complex tumour migration or bulk migration is another - best demontrated by tumour cells invading blood vessels.
METHODS: Thirty cases of non-small cell lung carcinomas were used for identifying genes responsible for bulk cell migration, 232 squamous cell and adenocarcinomas to identify bulk migration rates. Genes expressed differently in the primary tumour and in the invasion front were regarded as relevant in migration and further validated in 528 NSCLC cases represented on tissue microarrays (TMAs) and metastasis TMAs.
RESULTS: Markers relevant for bulk cancer cell migration were regulated differently when compared with EMT: Twist expressed in primary tumour, invasion front, and metastasis was not associated with TGFβ1 and canonical Wnt, as Slug, Snail, and Smads were negative and β-Catenin expressed membraneously. In the majority of tumours, E-Cadherin was downregulated at the invasive front, but not absent, but, coexpressed with N-Cadherin. Vimentin was coexpressed with cytokeratins at the invasion site in few cases, whereas fascin expression was seen in a majority. Expression of ERK1/2 was downregulated, PLCγ was only expressed at the invasive front and in metastasis. Brk and Mad, genes identified in Drosophila border cell migration, might be important for bulk migration and metastasis, together with invadipodia proteins Tks5 and Rab40B, which were only upregulated at the invasive front and in metastasis. CXCR1 was expressed equally in all carcinomas, as opposed to CXCR2 and 4, which were only expressed in few tumours.
CONCLUSION: Bulk cancer cell migration seems predominant in AC and SCC. Twist, vimentin, fascin, Mad, Brk, Tsk5, Rab40B, ERK1/2 and PLCγ are associated with bulk cancer cell migration. This type of migration requires an orchestrated activation of proteins to keep the cells bound to each other and to coordinate movement. This hypothesis needs to be proven experimentally.

Jiao J, Zhang R, Li Z, et al.
Nuclear Smad6 promotes gliomagenesis by negatively regulating PIAS3-mediated STAT3 inhibition.
Nat Commun. 2018; 9(1):2504 [PubMed] Free Access to Full Article Related Publications
To date, the molecular mechanism underlying constitutive signal transducer and activator of transcription 3 (STAT3) activation in gliomas is largely unclear. In this study, we report that Smad6 is overexpressed in nuclei of glioma cells, which correlates with poor patient survival and regulates STAT3 activity via negatively regulating the Protein Inhibitors of Activated STAT3 (PIAS3). Mechanically, Smad6 interacts directly with PIAS3, and this interaction is mediated through the Mad homology 2 (MH2) domain of Smad6 and the Ring domain of PIAS3. Smad6 recruits Smurf1 to facilitate PIAS3 ubiquitination and degradation, which also depends on the MH2 domain and the PY motif of Smad6. Consequently, Smad6 reduces PIAS3-mediated STAT3 inhibition and promotes glioma cell growth and stem-like cell initiation. Moreover, the Smad6 MH2 transducible protein restores PIAS3 expression and subsequently reduces gliomagenesis. Collectively, we conclude that nuclear-Smad6 enhances glioma development by inducing PIAS3 degradation and subsequent STAT3 activity upregulation.

Mitchell TJ, Turajlic S, Rowan A, et al.
Timing the Landmark Events in the Evolution of Clear Cell Renal Cell Cancer: TRACERx Renal.
Cell. 2018; 173(3):611-623.e17 [PubMed] Free Access to Full Article Related Publications
Clear cell renal cell carcinoma (ccRCC) is characterized by near-universal loss of the short arm of chromosome 3, deleting several tumor suppressor genes. We analyzed whole genomes from 95 biopsies across 33 patients with clear cell renal cell carcinoma. We find hotspots of point mutations in the 5' UTR of TERT, targeting a MYC-MAX-MAD1 repressor associated with telomere lengthening. The most common structural abnormality generates simultaneous 3p loss and 5q gain (36% patients), typically through chromothripsis. This event occurs in childhood or adolescence, generally as the initiating event that precedes emergence of the tumor's most recent common ancestor by years to decades. Similar genomic changes drive inherited ccRCC. Modeling differences in age incidence between inherited and sporadic cancers suggests that the number of cells with 3p loss capable of initiating sporadic tumors is no more than a few hundred. Early development of ccRCC follows well-defined evolutionary trajectories, offering opportunity for early intervention.

Wang R, Fu T, You K, et al.
Identification of a TGF-β-miR-195 positive feedback loop in hepatocytes and its deregulation in hepatoma cells.
FASEB J. 2018; 32(7):3936-3945 [PubMed] Related Publications
Resistance to TGF-β-induced growth repression is prevalent in various cancer cells, but the underlying mechanisms remain unclear. In this study, we showed that activation of TGF-β signaling caused Sma- and Mad-related family (Smad) 2 and Smad3 to bind directly to the promoter region of miR-195, and then activated miR-195 transcription in normal hepatocytes. Conversely, miR-195 inhibited the expression of Smad7 by binding to its 3'-UTR, thereby strengthening TGF-β-Smad signaling. These data identify a novel TGF-β-miR-195 positive regulatory circuitry in normal hepatocytes. Further investigation revealed that HDAC1, a histone deacetylase that was abnormally overexpressed in hepatocellular carcinoma, could bind to the miR-195 promoter via Smad3 and cause hypoacetylation in the histones associated with the miR-195 promoter in hepatoma cells. This resulted in transcriptional repression of miR-195 and, subsequently, disruption of the TGF-β-miR-195 regulatory loop and evasion of TGF-β-mediated growth inhibition. Moreover, silencing HDAC1 in hepatoma cells restored TGF-β-mediated growth suppression, but this effect was attenuated if miR-195 expression decreased. These findings suggest that HDAC1-induced miR-195 down-regulation is an important mechanism for tumor cells to resist the cytostatic activity of TGF-β, and highlight the importance of TGF-β-Smad2/3-miR-195-Smad7 circuitry in preventing uncontrolled cell proliferation.-Wang, R., Fu, T., You, K., Li, S., Zhao, N., Yang, J., Zhuang, S.-M. Identification of a TGF-β-miR-195 positive feedback loop in hepatocytes and its deregulation in hepatoma cells.

Dickson BC, Sung YS, Rosenblum MK, et al.
NUTM1 Gene Fusions Characterize a Subset of Undifferentiated Soft Tissue and Visceral Tumors.
Am J Surg Pathol. 2018; 42(5):636-645 [PubMed] Free Access to Full Article Related Publications
NUT midline carcinoma is an aggressive tumor that occurs mainly in the head and neck and, less frequently, the mediastinum and lung. Following identification of an index case of a NUTM1 fusion positive undifferentiated soft tissue tumor, we interrogated additional cases of primary undifferentiated soft tissue and visceral tumors for NUTM1 abnormalities. Targeted next-generation sequencing was performed on RNA extracted from formalin-fixed paraffin-embedded tissue, and results validated by fluorescence in situ hybridization using custom bacterial artificial chromosome probes. Six patients were identified: mean age of 42 years (range, 3 to 71 y); equal sex distribution; and, tumors involved the extremity soft tissues (N=2), kidney (N=2), stomach, and brain. On systemic work-up at presentation all patients lacked a distant primary tumor. Morphologically, the tumors were heterogenous, with undifferentiated round-epithelioid-rhabdoid cells arranged in solid sheets, nests, and cords. Mitotic activity was generally brisk. Four cases expressed pancytokeratin, but in only 2 cases was this diffuse. Next-generation sequencing demonstrated the following fusions: BRD4-NUTM1 (3 cases), BRD3-NUTM1, MXD1-NUTM1, and BCORL1-NUTM1. Independent testing by fluorescence in situ hybridization confirmed the presence of NUTM1 and partner gene rearrangement. This study establishes that NUT-associated tumors transgress the midline and account for a subset of primitive neoplasms occurring in soft tissue and viscera. Tumors harboring NUTM1 gene fusions are presumably underrecognized, and the extent to which they account for undifferentiated mesenchymal, neuroendocrine, and/or epithelial neoplasms is unclear. Moreover, the relationship, if any, between NUT-associated tumors in soft tissue and/or viscera, and conventional NUT carcinoma, remains to be elucidated.

Shi Y, Ye P, Long X
Differential Expression Profiles of the Transcriptome in Breast Cancer Cell Lines Revealed by Next Generation Sequencing.
Cell Physiol Biochem. 2017; 44(2):804-816 [PubMed] Related Publications
BACKGROUND/AIMS: As MCF-7 and MDA-MB-231 cells are the typical cell lines of two clinical breast tumour subtypes, the aim of the present study was to elucidate the transcriptome differences between MCF-7 and MDA-MB-231 breast cancer cell lines.
METHODS: The mRNA, miRNA (MicroRNA) and lncRNA (Long non-coding RNA) expression profiles were examined using NGS (next generation sequencing) instrument Illumina HiSeq-2500. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analyses were performed to identify the biological functions of differentially expressed coding RNAs. Subsequently, we constructed an mRNA-ncRNA (non-coding RNA) targeting regulatory network. Finally, we performed RT-qPCR (real-time quantitative PCR) to confirm the NGS results.
RESULTS: There are sharp distinctions of the coding and non-coding RNA profiles between MCF-7 and MDA-MB-231 cell lines. Among the mRNAs and ncRNAs with the most differential expression, SLPI, SOD2, miR-7, miR-143 and miR-145 were highly expressed in MCF-7 cells, while CD55, KRT17, miR-21, miR-10b, miR-9, NEAT1 and PICSAR were over-expressed in MDA-MB-231 cells. Differentially expressed mRNAs are primarily involved in biological processes of locomotion, biological adhesion, ECM-receptor interaction pathway and focal adhesion. In the targeting regulatory network of differentially expressed RNAs, mRNAs and miRNAs are primarily associated with tumour metastasis, but the functions of lncRNAs remain uncharacterized.
CONCLUSION: These results provide a basis for future studies of breast cancer metastasis and drug resistance.

Zheng D, Wu W, Dong N, et al.
Mxd1 mediates hypoxia-induced cisplatin resistance in osteosarcoma cells by repression of the PTEN tumor suppressor gene.
Mol Carcinog. 2017; 56(10):2234-2244 [PubMed] Related Publications
Hypoxia-induced chemoresistance remains a major obstacle to treating osteosarcoma effectively. Mxd1, a member of the Myc/Max/Mxd family, was shown to be involved in the development of drug resistance under hypoxia. However, the effect of Mxd1 on hypoxia-induced cisplatin (CDDP) resistance and its mechanism in osteosarcoma have not been fully elucidated. In this study, we demonstrated that HIF-1α-induced Mxd1 contributed to CDDP resistance in hypoxic U-2OS and MG-63 cells. The knockdown of Mxd1 expression elevated PTEN expression at both protein and RNA levels in these hypoxic cells. Using Luciferase reporter and ChIP assays, we confirmed that Mxd1 directly bound to the E-box sites within the PTEN promoter region. We further demonstrated that PTEN knockdown decreased CDDP sensitivity in Mxd1 siRNA-transfected U-2OS and MG-63 cells under hypoxia. Our results also showed that Mxd1 deficiency in hypoxic U-2OS and MG-63 cells lead to inactivation of PI3K/AKT signaling, which is the downstream of PTEN. Furthermore, blockade of PI3K/AKT signal re-sensitized hypoxic U-2OS and MG-63 cells to CDDP. Taken together, these findings suggest that HIF-1α-induced Mxd1 up-regulation suppresses the expression of PTEN under hypoxia, which leads to the activation of PI3K/AKT antiapoptotic and survival pathway. As a result CDDP resistance in osteosarcoma cells is induced.

Cheung AS, Yeap BB, Hoermann R, et al.
Effects of androgen deprivation therapy on telomere length.
Clin Endocrinol (Oxf). 2017; 87(4):381-385 [PubMed] Related Publications
OBJECTIVE: Recent evidence suggests that androgens either directly or via aromatisation to oestradiol may regulate telomere length, hence providing a mechanism whereby reproductive steroids are linked to biological ageing in men. Using men with prostate cancer initiating androgen deprivation therapy (ADT), we tested the hypothesis that severe sex steroid deprivation would accelerate telomere shortening.
DESIGN: We conducted a secondary analysis of a 2-year prospective controlled study among 65 men with nonmetastatic prostate cancer newly commencing adjuvant ADT (n=40) and age- and radiotherapy-matched prostate cancer controls (n=25).
METHODS: We measured leucocyte telomere length (LTL) expressed as telomeric/single copy control gene (T/S) ratio at baseline, 6, 12 and 24 months. Generalized linear models determined the mean adjusted difference (MAD) (95% confidence interval) between groups during follow-up.
RESULTS: Compared to controls over 24 months, men receiving ADT had no change in LTL, MAD for T/S ratio (0.105 [-0.004; 0.213], P=.235).
CONCLUSIONS: Using men with prostate cancer receiving ADT as a model we found no evidence that prolonged and profound sex steroid deprivation is associated with accelerated telomere shortening. Larger studies will be required to confirm or refute these findings.

Maltais L, Montagne M, Bédard M, et al.
Biophysical characterization of the b-HLH-LZ of ΔMax, an alternatively spliced isoform of Max found in tumor cells: Towards the validation of a tumor suppressor role for the Max homodimers.
PLoS One. 2017; 12(3):e0174413 [PubMed] Free Access to Full Article Related Publications
It is classically recognized that the physiological and oncogenic functions of Myc proteins depend on specific DNA binding enabled by the dimerization of its C-terminal basic-region-Helix-Loop-Helix-Leucine Zipper (b-HLH-LZ) domain with that of Max. However, a new paradigm is emerging, where the binding of the c-Myc/Max heterodimer to non-specific sequences in enhancers and promoters drives the transcription of genes involved in diverse oncogenic programs. Importantly, Max can form a stable homodimer even in the presence of c-Myc and bind DNA (specific and non-specific) with comparable affinity to the c-Myc/Max heterodimer. Intriguingly, alterations in the Max gene by germline and somatic mutations or changes in the gene product by alternative splicing (e.g. ΔMax) were recently associated with pheochromocytoma and glioblastoma, respectively. This has led to the proposition that Max is, by itself, a tumor suppressor. However, the actual mechanism through which it exerts such an activity remains to be elucidated. Here, we show that contrary to the WT motif, the b-HLH-LZ of ΔMax does not homodimerize in the absence of DNA. In addition, although ΔMax can still bind the E-box sequence as a homodimer, it cannot bind non-specific DNA in that form, while it can heterodimerize with c-Myc and bind E-box and non-specific DNA as a heterodimer with high affinity. Taken together, our results suggest that the WT Max homodimer is important for attenuating the binding of c-Myc to specific and non-specific DNA, whereas ΔMax is unable to do so. Conversely, the splicing of Max into ΔMax could provoke an increase in overall chromatin bound c-Myc. According to the new emerging paradigm, the splicing event and the stark reduction in homodimer stability and DNA binding should promote tumorigenesis impairing the tumor suppressor activity of the WT homodimer of Max.

Chen S, Bu D, Ma Y, et al.
H19 Overexpression Induces Resistance to 1,25(OH)2D3 by Targeting VDR Through miR-675-5p in Colon Cancer Cells.
Neoplasia. 2017; 19(3):226-236 [PubMed] Free Access to Full Article Related Publications
The long noncoding (lnc) RNA H19 was involved in the tumorigenesis of many types of cancer. However, the role of H19 in the tumorigenesis of colon cancer has not been fully illustrated. Recent studies suggested a potential relationship between H19 and vitamin D receptor (VDR) signaling. Considering the pivotal role of VDR signaling in the colon epithelium both physiologically and pathologically, the correlation between H19 and VDR signaling may have an important role in the development of colon cancer. In this study, the correlation between H19 and vitamin D receptor (VDR) signaling and the underlying mechanisms in colon cancer were investigated both in vitro and in vivo. The results suggested that VDR signaling was able to inhibit the expression of H19 through regulating C-Myc/Mad-1 network. H19, on the other hand, was able to inhibit the expression of VDR through micro RNA 675-5p (miR-675-5p). Furthermore, H19 overexpression induced resistance to the treatment with 1,25(OH)2D3 both in vitro and in vivo. Together, these results suggested that H19 overexpression might be one of the mechanisms underlying the development of resistance to the treatment with 1,25(OH)2D3 in the advanced stage of colon cancer.

Teye EK, Sido A, Xin P, et al.
PIGN gene expression aberration is associated with genomic instability and leukemic progression in acute myeloid leukemia with myelodysplastic features.
Oncotarget. 2017; 8(18):29887-29905 [PubMed] Free Access to Full Article Related Publications
Previous studies have linked increased frequency of glycosylphosphatidylinositol-anchor protein (GPI-AP) deficiency with genomic instability and the risk of carcinogenesis. However, the underlying mechanism is still not clear. A randomForest analysis of the gene expression array data from 55 MDS patients (GSE4619) demonstrated a significant (p = 0.0007) correlation (Pearson r =-0.4068) between GPI-anchor biosynthesis gene expression and genomic instability, in which PIGN, a gene participating in GPI-AP biosynthesis, was ranked as the third most important in predicting risk of MDS progression. Furthermore, we observed that PIGN gene expression aberrations (increased transcriptional activity but diminished to no protein production) were associated with increased frequency of GPI-AP deficiency in leukemic cells during leukemic transformation/progression. PIGN gene expression aberrations were attributed to partial intron retentions between exons 14 and 15 resulting in frameshifts and premature termination which were confirmed by examining the RNA-seq data from a group of AML patients (phs001027.v1.p1). PIGN gene expression aberration correlated with the elevation of genomic instability marker expression that was independent of the TP53 regulatory pathway. Suppression/elimination of PIGN protein expression caused a similar pattern of genomic instability that was rescued by PIGN restoration. Finally, we found that PIGN bound to the spindle assembly checkpoint protein, MAD1, and regulated its expression during the cell cycle. In conclusion, PIGN gene is crucial in regulating mitotic integrity to maintain chromosomal stability and prevents leukemic transformation/progression.

Faião-Flores F, Alves-Fernandes DK, Pennacchi PC, et al.
Targeting the hedgehog transcription factors GLI1 and GLI2 restores sensitivity to vemurafenib-resistant human melanoma cells.
Oncogene. 2017; 36(13):1849-1861 [PubMed] Free Access to Full Article Related Publications
BRAF inhibitor (BRAFi) therapy for melanoma patients harboring the V600E mutation is initially highly effective, but almost all patients relapse within a few months. Understanding the molecular mechanisms underpinning BRAFi-based therapy is therefore an important issue. Here we identified a previously unsuspected mechanism of BRAFi resistance driven by elevated Hedgehog (Hh) pathway activation that is observed in a cohort of melanoma patients after vemurafenib treatment. Specifically, we demonstrate that melanoma cell lines, with acquired in vitro-induced vemurafenib resistance, show increased levels of glioma-associated oncogene homolog 1 and 2 (GLI1/GLI2) compared with naïve cells. We also observed these findings in clinical melanoma specimens. Moreover, the increased expression of the transcription factors GLI1/GLI2 was independent of canonical Hh signaling and was instead correlated with the noncanonical Hh pathway, involving TGFβ/SMAD (transforming growth factor-β/Sma- and Mad-related family) signaling. Knockdown of GLI1 and GLI2 restored sensitivity to vemurafenib-resistant cells, an effect associated with both growth arrest and senescence. Treatment of vemurafenib-resistant cells with the GLI1/GLI2 inhibitor Gant61 led to decreased invasion of the melanoma cells in a three-dimensional skin reconstruct model and was associated with a decrease in metalloproteinase (MMP2/MMP9) expression and microphthalmia transcription factor upregulation. Gant61 monotherapy did not alter the drug sensitivity of naïve cells, but could reverse the resistance of melanoma cells chronically treated with vemurafenib. We further noted that alternating dosing schedules of Gant61 and vemurafenib prevented the onset of BRAFi resistance, suggesting that this could be a potential therapeutic strategy for the prevention of therapeutic escape. Our results suggest that targeting the Hh pathway in BRAFi-resistant melanoma may represent a viable therapeutic strategy to restore vemurafenib sensitivity, reducing or even inhibiting the acquired chemoresistance in melanoma patients.

Dakic A, DiVito K, Fang S, et al.
ROCK inhibitor reduces Myc-induced apoptosis and mediates immortalization of human keratinocytes.
Oncotarget. 2016; 7(41):66740-66753 [PubMed] Free Access to Full Article Related Publications
The Myc/Max/Mad network plays a critical role in cell proliferation, differentiation and apoptosis and c-Myc is overexpressed in many cancers, including HPV-positive cervical cancer cell lines. Despite the tolerance of cervical cancer keratinocytes to high Myc expression, we found that the solitary transduction of the Myc gene into primary cervical and foreskin keratinocytes induced rapid cell death. These findings suggested that the anti-apoptotic activity of E7 in cervical cancer cells might be responsible for negating the apoptotic activity of over-expressed Myc. Indeed, our earlier in vitro studies demonstrated that Myc and E7 synergize in the immortalization of keratinocytes. Since we previously postulated that E7 and the ROCK inhibitor, Y-27632, were members of the same functional pathway in cell immortalization, we tested whether Y-27632 would inhibit apoptosis induced by the over-expression of Myc. Our findings indicate that Y-27632 rapidly inhibited Myc-induced membrane blebbing and cellular apoptosis and, more generally, functioned as an inhibitor of extrinsic and intrinsic pathways of cell death. Most important, Y-27632 cooperated with Myc to immortalize keratinocytes efficiently, indicating that apoptosis is a major barrier to Myc-induced immortalization of keratinocytes. The anti-apoptotic activity of Y-27632 correlated with a reduction in p53 serine 15 phosphorylation and the consequent reduction in the expression of downstream target genes p21 and DAPK1, two genes involved in the induction of cell death.

Deng Y, Wang Z, Zhang F, et al.
A Blockade of IGF Signaling Sensitizes Human Ovarian Cancer Cells to the Anthelmintic Niclosamide-Induced Anti-Proliferative and Anticancer Activities.
Cell Physiol Biochem. 2016; 39(3):871-88 [PubMed] Related Publications
BACKGROUND/AIMS: Ovarian cancer is the most lethal gynecologic malignancy, and there is an unmet clinical need to develop new therapies. Although showing promising anticancer activity, Niclosamide may not be used as a monotherapy. We seek to investigate whether inhibiting IGF signaling potentiates Niclosamide's anticancer efficacy in human ovarian cancer cells.
METHODS: Cell proliferation and migration are assessed. Cell cycle progression and apoptosis are analyzed by flow cytometry. Inhibition of IGF signaling is accomplished by adenovirus-mediated expression of siRNAs targeting IGF-1R. Cancer-associated pathways are assessed using pathway-specific reporters. Subcutaneous xenograft model is used to determine anticancer activity.
RESULTS: We find that Niclosamide is highly effective on inhibiting cell proliferation, cell migration, and cell cycle progression, and inducing apoptosis in human ovarian cancer cells, possibly by targeting multiple signaling pathways involved in ELK1/SRF, AP-1, MYC/MAX and NFkB. Silencing IGF-1R exert a similar but weaker effect than that of Niclosamide's. However, silencing IGF-1R significantly sensitizes ovarian cancer cells to Niclosamide-induced anti-proliferative and anticancer activities both in vitro and in vivo.
CONCLUSION: Niclosamide as a repurposed anticancer agent may be more efficacious when combined with agents that target other signaling pathways such as IGF signaling in the treatment of human cancers including ovarian cancer.

Mondal B, Patil V, Shwetha SD, et al.
Integrative functional genomic analysis identifies epigenetically regulated fibromodulin as an essential gene for glioma cell migration.
Oncogene. 2017; 36(1):71-83 [PubMed] Related Publications
An integrative functional genomics study of multiple forms of data are vital for discovering molecular drivers of cancer development and progression. Here, we present an integrated genomic strategy utilizing DNA methylation and transcriptome profile data to discover epigenetically regulated genes implicated in cancer development and invasive progression. More specifically, this analysis identified fibromodulin (FMOD) as a glioblastoma (GBM) upregulated gene because of the loss of promoter methylation. Secreted FMOD promotes glioma cell migration through its ability to induce filamentous actin stress fiber formation. Treatment with cytochalasin D, an actin polymerization inhibitor, significantly reduced the FMOD-induced glioma cell migration. Small interfering RNA and small molecule inhibitor-based studies identified that FMOD-induced glioma cell migration is dependent on integrin-FAK-Src-Rho-ROCK signaling pathway. FMOD lacking C-terminus LRR11 domain (ΔFMOD), which does not bind collagen type I, failed to induce integrin and promote glioma cell migration. Further, FMOD-induced integrin activation and migration was abrogated by a 9-mer wild-type peptide from the FMOD C-terminus. However, the same peptide with mutation in two residues essential for FMOD interaction with collagen type I failed to compete with FMOD, thus signifying the importance of collagen type I-FMOD interaction in integrin activation. Chromatin immunoprecipitation-PCR experiments revealed that transforming growth factor beta-1 (TGF-β1) regulates FMOD expression through epigenetic remodeling of FMOD promoter that involved demethylation and gain of active histone marks with a simultaneous loss of DNMT3A and EZH2 occupancy, but enrichment of Sma- and Mad-related protein-2 (SMAD2) and CBP. FMOD silencing inhibited the TGF-β1-mediated glioma cell migration significantly. In univariate and multivariate Cox regression analysis, both FMOD promoter methylation and transcript levels predicted prognosis in GBM. Thus, this study identified several epigenetically regulated alterations responsible for cancer development and progression. Specifically, we found that secreted FMOD as an important regulator of glioma cell migration downstream of TGF-β1 pathway and forms a potential basis for therapeutic intervention in GBM.

Zand B, Previs RA, Zacharias NM, et al.
Role of Increased n-acetylaspartate Levels in Cancer.
J Natl Cancer Inst. 2016; 108(6):djv426 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The clinical and biological effects of metabolic alterations in cancer are not fully understood.
METHODS: In high-grade serous ovarian cancer (HGSOC) samples (n = 101), over 170 metabolites were profiled and compared with normal ovarian tissues (n = 15). To determine NAT8L gene expression across different cancer types, we analyzed the RNA expression of cancer types using RNASeqV2 data available from the open access The Cancer Genome Atlas (TCGA) website (http://www.cbioportal.org/public-portal/). Using NAT8L siRNA, molecular techniques and histological analysis, we determined cancer cell viability, proliferation, apoptosis, and tumor growth in in vitro and in vivo (n = 6-10 mice/group) settings. Data were analyzed with the Student's t test and Kaplan-Meier analysis. Statistical tests were two-sided.
RESULTS: Patients with high levels of tumoral NAA and its biosynthetic enzyme, aspartate N-acetyltransferase (NAT8L), had worse overall survival than patients with low levels of NAA and NAT8L. The overall survival duration of patients with higher-than-median NAA levels (3.6 years) was lower than that of patients with lower-than-median NAA levels (5.1 years, P = .03). High NAT8L gene expression in other cancers (melanoma, renal cell, breast, colon, and uterine cancers) was associated with worse overall survival. NAT8L silencing reduced cancer cell viability (HEYA8: control siRNA 90.61% ± 2.53, NAT8L siRNA 39.43% ± 3.00, P < .001; A2780: control siRNA 90.59% ± 2.53, NAT8L siRNA 7.44% ± 1.71, P < .001) and proliferation (HEYA8: control siRNA 74.83% ± 0.92, NAT8L siRNA 55.70% ± 1.54, P < .001; A2780: control siRNA 50.17% ± 4.13, NAT8L siRNA 26.52% ± 3.70, P < .001), which was rescued by addition of NAA. In orthotopic mouse models (ovarian cancer and melanoma), NAT8L silencing reduced tumor growth statistically significantly (A2780: control siRNA 0.52 g ± 0.15, NAT8L siRNA 0.08 g ± 0.17, P < .001; HEYA8: control siRNA 0.79 g ± 0.42, NAT8L siRNA 0.24 g ± 0.18, P = .008, A375-SM: control siRNA 0.55 g ± 0.22, NAT8L siRNA 0.21 g ± 0.17 g, P = .001). NAT8L silencing downregulated the anti-apoptotic pathway, which was mediated through FOXM1.
CONCLUSION: These findings indicate that the NAA pathway has a prominent role in promoting tumor growth and represents a valuable target for anticancer therapy.Altered energy metabolism is a hallmark of cancer (1). Proliferating cancer cells have much greater metabolic requirements than nonproliferating differentiated cells (2,3). Moreover, altered cancer metabolism elevates unique metabolic intermediates, which can promote cancer survival and progression (4,5). Furthermore, emerging evidence suggests that proliferating cancer cells exploit alternative metabolic pathways to meet their high demand for energy and to accumulate biomass (6-8).

Mbekeani JN, Abdel Fattah M, Al Nounou RM, et al.
Chronic Myelogenous Leukemia Relapse Presenting With Central Nervous System Blast Crisis and Bilateral Optic Nerve Infiltration.
J Neuroophthalmol. 2016; 36(1):73-7 [PubMed] Related Publications
Bilateral, simultaneous optic nerve sheath infiltration as a manifestation of leukemia relapse is very rare. A 45-year-old woman with chronic myelogenous leukemia was successfully treated to cytogenetic bone marrow remission 1 year previously and maintained on imatinib. She developed total bilateral blindness with marked, bilateral optic disc edema and evidence of bilateral optic nerve infiltration on magnetic resonance imaging. Cerebrospinal fluid cytology confirmed central nervous system (CNS) blast crisis. She recovered visual acuity of 20/20 in the right eye, and 20/25 in the left eye with salvage systemic and intrathecal chemotherapy before radiation therapy. Our report underscores the importance of timely and aggressive intervention of blast crisis of the CNS and the need for CNS penetrating induction and maintenance therapy.

Thomas LR, Foshage AM, Weissmiller AM, Tansey WP
The MYC-WDR5 Nexus and Cancer.
Cancer Res. 2015; 75(19):4012-5 [PubMed] Free Access to Full Article Related Publications
The MYC oncogenes encode a family of transcription factors that feature prominently in cancer. MYC proteins are overexpressed or deregulated in a majority of malignancies and drive tumorigenesis by inducing widespread transcriptional reprogramming that promotes cell proliferation, metabolism, and genomic instability. The ability of MYC to regulate transcription depends on its dimerization with MAX, which creates a DNA-binding domain that recognizes specific sequences in the regulatory elements of MYC target genes. Recently, we discovered that recognition of target genes by MYC also depends on its interaction with WDR5, a WD40-repeat protein that exists as part of several chromatin-regulatory complexes. Here, we discuss how interaction of MYC with WDR5 could create an avidity-based chromatin recognition mechanism that allows MYC to select its target genes in response to both genetic and epigenetic determinants. We rationalize how the MYC-WDR5 interaction provides plasticity in target gene selection by MYC and speculate on the biochemical and genomic contexts in which this interaction occurs. Finally, we discuss how properties of the MYC-WDR5 interface make it an attractive point for discovery of small-molecule inhibitors of MYC function in cancer cells.

Feng J, Chen X, Wang Y, et al.
Myricetin inhibits proliferation and induces apoptosis and cell cycle arrest in gastric cancer cells.
Mol Cell Biochem. 2015; 408(1-2):163-70 [PubMed] Related Publications
Myricetin is a flavonoid that is abundant in fruits and vegetables and has protective effects against cancer and diabetes. However, the mechanism of action of myricetin against gastric cancer (GC) is not fully understood. We researched myricetin on the proliferation, apoptosis, and cell cycle in GC HGC-27 and SGC7901 cells, to explore the underlying mechanism of action. Cell Counting Kit (CCK)-8 assay, Western blotting, cell cycle analysis, and apoptosis assay were used to evaluate the effects of myricetin on cell proliferation, apoptosis, and the cell cycle. To analyze the binding properties of ribosomal S6 kinase 2 (RSK2) with myricetin, surface plasmon resonance (SPR) analysis was performed. CCK8 assay showed that myricetin inhibited GC cell proliferation. Flow cytometry analysis showed that myricetin induces apoptosis and cell cycle arrest in GC cells. Western blotting indicated that myricetin influenced apoptosis and cell cycle arrest of GC cells by regulating related proteins. SPR analysis showed strong binding affinity of RSK2 and myricetin. Myricetin bound to RSK2, leading to increased expression of Mad1, and contributed to inhibition of HGC-27 and SGC7901 cell proliferation. Our results suggest the therapeutic potential of myricetin in GC.

Boudjadi S, Carrier JC, Groulx JF, Beaulieu JF
Integrin α1β1 expression is controlled by c-MYC in colorectal cancer cells.
Oncogene. 2016; 35(13):1671-8 [PubMed] Free Access to Full Article Related Publications
The α1β1 collagen receptor is only present in a few epithelial cell types. In the intestine, it is specifically expressed in proliferating crypt cells. This integrin has been reported to be involved in various cancers where it mediates the downstream activation of the Ras/ERK proliferative pathway. We have recently shown that integrin α1β1 is present in two-thirds of colon adenocarcinomas, but the mechanism by which ITGA1 expression is regulated is not known. DNA methylation, involved in ITGA1 repression during megakaryocyte differentiation, is not the mechanism of ITGA1 regulation in colorectal cancer cells. Our in silico analysis of the ITGA1 promoter revealed two response elements for MYC, an oncogenic factor known to regulate cancer cell proliferation, invasion and migration. In situ, the expressions of both MYC and ITGA1 are localized in the lower crypt of the normal colon and correlate in 72% of the 65 analyzed colorectal cancers. MYC pharmacological inhibition or downregulation of expression with short hairpin RNA in HT29, T84 and SW480 cells resulted in reduced ITGA1 expression at both the transcript and protein levels. Chromatin immunoprecipitation assays revealed that MYC was bound to the chromatin region of the ITGA1 proximal promoter, whereas MYC overexpression enhanced ITGA1 promoter activity that was reduced with MAD co-transfection or by the disruption of the response elements. We concluded that MYC is a key regulating factor for the control of ITGA1 expression.

Kwon YJ, Petrie K, Leibovitch BA, et al.
Selective Inhibition of SIN3 Corepressor with Avermectins as a Novel Therapeutic Strategy in Triple-Negative Breast Cancer.
Mol Cancer Ther. 2015; 14(8):1824-36 [PubMed] Free Access to Full Article Related Publications
Triple-negative breast cancers (TNBC) lacking estrogen, progesterone, and HER2 receptors account for 10% to 20% of breast cancer and are indicative of poor prognosis. The development of effective treatment strategies therefore represents a pressing unmet clinical need. We previously identified a molecularly targeted approach to target aberrant epigenetics of TNBC using a peptide corresponding to the SIN3 interaction domain (SID) of MAD. SID peptide selectively blocked binding of SID-containing proteins to the paired α-helix (PAH2) domain of SIN3, resulting in epigenetic and transcriptional modulation of genes associated with epithelial-mesenchymal transition (EMT). To find small molecule inhibitor (SMI) mimetics of SID peptide, we performed an in silico screen for PAH2 domain-binding compounds. This led to the identification of the avermectin macrocyclic lactone derivatives selamectin and ivermectin (Mectizan) as candidate compounds. Both selamectin and ivermectin phenocopied the effects of SID peptide to block SIN3-PAH2 interaction with MAD, induce expression of CDH1 and ESR1, and restore tamoxifen sensitivity in MDA-MB-231 human and MMTV-Myc mouse TNBC cells in vitro. Treatment with selamectin or ivermectin led to transcriptional modulation of genes associated with EMT and maintenance of a cancer stem cell phenotype in TNBC cells. This resulted in impairment of clonogenic self-renewal in vitro and inhibition of tumor growth and metastasis in vivo. Underlining the potential of avermectins in TNBC, pathway analysis revealed that selamectin also modulated the expression of therapeutically targetable genes. Consistent with this, an unbiased drug screen in TNBC cells identified selamectin-induced sensitization to a number of drugs, including those targeting modulated genes.

Hoekstra AS, Devilee P, Bayley JP
Models of parent-of-origin tumorigenesis in hereditary paraganglioma.
Semin Cell Dev Biol. 2015; 43:117-124 [PubMed] Related Publications
Paraganglioma and pheochromocytoma are neuroendocrine tumors that originate from either the sympathetic or the parasympathetic branches of the autonomic nervous system. Although 14 different genes have been linked to paraganglioma/pheochromocytoma, a subgroup of these genes is associated with hereditary paraganglioma-pheochromocytoma, the genes related to mitochondrial succinate dehydrogenase (SDH) including SDHA, SDHB, SDHC, SDHD and the assembly factor SDHAF2. Unlike mutations in other SDH subunit genes, mutations in SDHD and SDHAF2 show a remarkable parent-of-origin dependent tumorigenesis in which tumor formation almost exclusively occurs following paternal transmission of the mutation. To date, three different models have sought to explain the striking inheritance pattern seen in SDHD and SDHAF2-linked families. Despite the fact that the models suffer to varying degrees from a lack of experimental verification, all three models have made some attempt to incorporate current data and understanding of this phenomenon. In this review, we discuss our present understanding of this phenomenon and describe the three models that seek to explain the inheritance pattern in SDHD and SDHAF2-linked families.

Dasgupta P, Sengupta SB
Role of diallyl disulfide-mediated cleavage of c-Myc and Sp-1 in the regulation of telomerase activity in human lymphoma cell line U937.
Nutrition. 2015 Jul-Aug; 31(7-8):1031-7 [PubMed] Related Publications
OBJECTIVE: Garlic (Allium sativum) has been considered a wonder herb for years with a reputation of disease prevention. Telomerase, a ribonucleoprotein enzyme responsible for telomere integrity, is strongly up-regulated in different types of cancers. The aim of this study was to reveal the role of diallyl disulfide (DADS), an organosulfur component of garlic, on telomerase activity in human lymphoma with an emphasis on key transcription factors c-Myc and Sp-1.
METHODS: Human lymphoma cell line U937 was used as model cell line. Telomerase activity was measured by telomerase repeat amplification protocol assay, levels of related proteins and mRNAs were measured by Western blot and reverse transcriptase polymerase chain reaction, respectively. Moreover, in vitro binding assay was performed using radiolabeled double-stranded DNA having specific sequences to detect involvement of transcription factors in DADS-dependent modulation of telomerase activity.
RESULTS: The present study demonstrated DADS-mediated decrease in telomerase activity in U937 cells with concomitant transcriptional down-regulation of human telomerase reverse transcriptase (hTERT) that is caused by reduced binding of c-Myc and Sp-1 to their respective binding sites on hTERT promoter. Lowering of DNA-binding activity of c-Myc and Sp-1 due to DADS treatment is caused by the deactivation of these transcription factors due to cleavage. Additionally, Mad1-the repressor protein of hTERT expression-is also overexpressed in DADS-treated U937 cells.
CONCLUSIONS: These findings strongly suggest that DADS down-regulate telomerase activity through c-Myc-, Sp-1-, and Mad1-dependent transcriptional down-regulation of hTERT.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MXD1, Cancer Genetics Web: http://www.cancer-genetics.org/MXD1.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 01 September, 2019     Cancer Genetics Web, Established 1999