Gene Summary

Gene:MS4A1; membrane-spanning 4-domains, subfamily A, member 1
Aliases: B1, S7, Bp35, CD20, CVID5, MS4A2, LEU-16
Summary:This gene encodes a member of the membrane-spanning 4A gene family. Members of this nascent protein family are characterized by common structural features and similar intron/exon splice boundaries and display unique expression patterns among hematopoietic cells and nonlymphoid tissues. This gene encodes a B-lymphocyte surface molecule which plays a role in the development and differentiation of B-cells into plasma cells. This family member is localized to 11q12, among a cluster of family members. Alternative splicing of this gene results in two transcript variants which encode the same protein. [provided by RefSeq, Jul 2008]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:B-lymphocyte antigen CD20
Source:NCBIAccessed: 27 February, 2015


What does this gene/protein do?
Show (8)
Pathways:What pathways are this gene/protein implicaed in?
Show (1)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 27 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

  • Pleural Effusion, Malignant
  • Antigens, CD20
  • Vascular Neoplasms
  • Follicular Lymphoma
  • Gene Rearrangement
  • Cancer DNA
  • Risk Factors
  • Gene Rearrangement, B-Lymphocyte, Heavy Chain
  • Antineoplastic Agents
  • Antibodies, Monoclonal, Murine-Derived
  • Flow Cytometry
  • FISH
  • Childhood Cancer
  • T-Lymphocyte Subsets
  • Chromosome Aberrations
  • Immunohistochemistry
  • Remission Induction
  • Chromosome 14
  • Adolescents
  • Autologous Transplantat
  • Immunoglobulin Heavy Chains
  • Mutation
  • B-Lymphocytes
  • Differential Diagnosis
  • Radiotherapy
  • Cancer Gene Expression Regulation
  • Prevalence
  • Receptors, IgE
  • Monoclonal Antibodies
  • Vaginal Cancer
  • Translocation
  • Thyrotropin
  • DNA-Binding Proteins
  • Immunophenotyping
  • Chromosome 11
  • CD Antigens
  • Diffuse Large B-Cell Lymphoma
  • Skin Cancer
  • Chronic Lymphocytic Leukemia
  • Thymus Hyperplasia
Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (4)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: MS4A1 (cancer-related)

Wang Y, Zhang WY, Han QW, et al.
Effective response and delayed toxicities of refractory advanced diffuse large B-cell lymphoma treated by CD20-directed chimeric antigen receptor-modified T cells.
Clin Immunol. 2014; 155(2):160-75 [PubMed] Related Publications
We conducted a trial testing a CD20-specific CAR coupled with CD137 and the CD3ζ moiety in patients with chemotherapy refractory advanced diffuse large B cell lymphomas (DLBCL). Seven patients were enrolled. One of the two patients with no bulky tumor obtained a 14-month durable and ongoing complete remission by cell infusion only, and another attained a 6-month tumor regression. Four of five patients with bulky tumor burden were evaluable for clinical efficacy, three of which attained 3- to 6-month tumor regression. Delayed toxicities related to cell infusion are directly correlated to tumor burden and tumor-harboring sites, and mainly included cytokine release symptoms, tumor lysis symptoms, massive hemorrhage of the alimentary tract and aggressive intrapulmonary inflammation surrounding extranodal lesions. These results show firstly that anti-CD20 CART cells can cause prolonged tumor regression in combination with debulking conditioning regimens for advanced DLBCL. This study is registered at as NCT01735604.

Liu H, Shi D, Liu T, et al.
Lentivirus-mediated silencing of SCIN inhibits proliferation of human lung carcinoma cells.
Gene. 2015; 554(1):32-9 [PubMed] Related Publications
SCIN (scinderin) is a calcium-dependent actin severing and capping protein. Homologue in zebrafish has been found to be related with cell death. In the present study, we found that SCIN is highly expressed in human lung cancer specimens. However, the role of SCIN in lung cancer has not yet been determined. To investigate the function of SCIN in lung carcinoma cells, we took advantage of lentivirus-mediated RNA interference (RNAi) to knockdown SCIN expression in two lung carcinoma cell lines A549 and H1299. Silencing of SCIN significantly inhibited the proliferation and colony formation ability of both cell lines in vitro. Moreover, flow cytometry analysis showed that knockdown of SCIN led to G0/G1 phase cell cycle arrest as well as an excess accumulation of cells in the sub-G1 phase. Furthermore, depletion of SCIN resulted in a significant increase in Cyclin B1, p21 and PARP expression, and a little decrease in Cyclin D1 expression. These results suggest that SCIN plays an important role in lung carcinoma cell proliferation, and lentivirus-mediated silencing of SCIN might be a potential therapeutic approach for the treatment of lung cancer.

Hayashi T, Horiuchi A, Sano K, et al.
Potential diagnostic biomarkers: differential expression of LMP2/β1i and cyclin B1 in human uterine leiomyosarcoma.
Tumori. 2014 Jul-Aug; 100(4):99e-106e [PubMed] Related Publications
AIMS AND BACKGROUND: Whilst most uterine smooth muscle neoplasms are benign, uterine leiomyosarcoma (Ut-LMS) is extremely malignant with a high incidence of metastasis and recurrence. Gynecological tumors are often associated with female hormone secretion, but no strong link has been detected between human Ut-LMS and the hormonal environment. In fact, the risk factors for Ut-LMS are poorly understood. In addition, no diagnostic biomarkers for differentiating between leiomyoma, a benign tumor, and malignant Ut-LMS have been found. Interestingly, mice that were homozygously deficient for LMP2/β1i were found to spontaneously develop Ut-LMS and exhibited a Ut-LMS prevalence of ~40% by 14 months of age. Thus, analyzing potential risk factors for Ut-LMS (such as LMP2/β1i) might aid the development of diagnostic biomarkers and clinical treatments for the condition.
METHODS AND STUDY DESIGN: Fifty-seven patients (age range: 32-83 years) who had been diagnosed with uterine mesenchymal tumors were chosen from a pathological archive. Tissue samples from these patients were fixed in 10% buffered formalin, incubated in 4% paraformaldehyde for 8 hours, and embedded in paraffin. Tissue sections were stained with hematoxylin and eosin for standard histological examination or were subjected to further processing for immunohistochemical (IHC) examination. Serial Ut-LMS, bizarre leiomyoma, leiomyoma, and myometrium sections were subjected to IHC staining of β-smooth muscle actin, estrogen receptor, cyclin B1, LMP2/β1i, calponin h1, ki-67, tumor protein p53, and progesterone receptor.
RESULTS: The Ut-LMS samples were positive for cyclin B1 and negative for LMP2/β1i, while the opposite result was obtained for bizarre leiomyoma, leiomyoma, and myometrium samples.
CONCLUSIONS: The expression pattern of LMP2/β1i and cyclin B1 might be a diagnostic biomarker for human Ut-LMS. Studies of the biological roles of LMP2/β1i and/or cyclin B1 could lead to the elucidation of new targets for therapies against Ut-LMS.

Fredholm S, Gjerdrum LM, Willerslev-Olsen A, et al.
STAT3 activation and infiltration of eosinophil granulocytes in mycosis fungoides.
Anticancer Res. 2014; 34(10):5277-86 [PubMed] Related Publications
Eosinophil granulocytes have been implicated in anticancer immunity but recent data indicate that eosinophils can also promote cancer. Herein, we studied eosinophils in skin lesions from 43 patients with mycosis fungoides (MF). The presence of eosinophils correlated with disease stage: 78% of patients with advanced disease displayed eosinophil infiltration, whereas this was only seen in 11% of patients with patches (p<0.01), and in 48% of those with plaque disease. Importantly, 72% of patients with positive staining for phospho-signal-transducer-and-activator-of-transcription (pY-STAT3) in malignant T-cells also stained positively for eosinophils, whereas this was only observed in 28% of pY-STAT3-negative patients (p<0.01). Notably, malignant T-cells expressed eosinophilic activation and trafficking factors: High-mobility group BOX-1 protein (HMGB1) and interleukin 5 (IL5). STAT3 siRNA profoundly inhibited IL5 but not HMGB1 expression. In conclusion, these data suggest that malignant T-cells orchestrate accumulation and activation of eosinophils supporting the notion of STAT3 being a putative target for therapy.

Nault JC
Pathogenesis of hepatocellular carcinoma according to aetiology.
Best Pract Res Clin Gastroenterol. 2014; 28(5):937-47 [PubMed] Related Publications
Hepatocellular carcinoma is related to various etiologies including hepatitis B, hepatitis C, high alcohol intake, aflatoxin B1 and metabolic syndrome. Most of the time HCC developed on cirrhosis. Consequently, the mechanisms of carcinogenesis of these different risk factors are difficult to separate from the events leading to cirrhosis. In contrast, aflatoxin B1 and hepatitis B have a clear direct oncogenic role through point mutations in the TP53 tumour suppressor gene and insertional mutagenesis respectively. Finally, next-generation sequencing and transcriptome analysis will refine our knowledge of the relationship between aetiology and the genetic events that draw the mutational landscape of hepatocellular carcinoma.

Kalinsky K, Lim EA, Andreopoulou E, et al.
Increased expression of tumor proliferation genes in Hispanic women with early-stage breast cancer.
Cancer Invest. 2014; 32(9):439-44 [PubMed] Related Publications
Hispanic women have higher breast cancer mortality compared to non-Hispanic whites. We evaluated for Proliferation Axis Score differences, as determined by Oncotype Dx, in Hispanic and non-Hispanic white women with newly diagnosed breast cancer. We matched 219 women, based upon age, stage, and nodal status. Compared to non-Hispanic whites, Hispanic women with hormone-sensitive, HER2-negative early-stage breast cancer had a higher Proliferation Axis Score. No differences were seen in Recurrence Score, ER, PR, or HER2 by Oncotype DX. CCNB1 and AURKA were significantly higher in Hispanic women. These tumor differences may help explain breast cancer outcome differences between the two ethnicities.

Dimeloe S, Frick C, Fischer M, et al.
Human regulatory T cells lack the cyclophosphamide-extruding transporter ABCB1 and are more susceptible to cyclophosphamide-induced apoptosis.
Eur J Immunol. 2014; 44(12):3614-20 [PubMed] Related Publications
ATP-binding cassette (ABC) transporters, including ABC-transporter B1 (ABCB1), extrude drugs, metabolites, and other compounds (such as mitotracker green (MTG)) from cells. Susceptibility of CD4(+) regulatory T (Treg) cells to the ABCB1-substrate cyclophosphamide (CPA) has been reported. Here, we characterized ABCB1 expression and function in human CD4(+) T-cell subsets. Naïve, central memory, and effector-memory CD4(+) T cells, but not Treg cells, effluxed MTG in an ABCB1-dependent manner. In line with this, ABCB1 mRNA and protein was expressed by nonregulatory CD4(+) T-cell subsets, but not Treg cells. In vitro, the ABCB1-substrate CPA was cytotoxic for Treg cells at a 100-fold lower dose than for nonregulatory counterparts, and, inversely, verapamil, an inhibitor of ABC transporters, increased CPA-toxicity in nonregulatory CD4(+) T cells but not Treg cells. Thus, Treg cells lack expression of ABCB1, rendering them selectively susceptible to CPA. Our findings provide mechanistic support for therapeutic strategies using CPA to boost anti-tumor immunity by selectively depleting Treg cells.

Wong Y, Abdul-Rahman F, Samsudin AT, Masir N
A case of t(14; 18)-negative follicular lymphoma with atypical immunophenotype: usefulness of immunoarchitecture of Ki67, CD79a and follicular dendritic cell meshwork in making the diagnosis.
Malays J Pathol. 2014; 36(2):125-9 [PubMed] Related Publications
Follicular lymphoma is characterised by the t(14;18)(q32;q21) chromosomal translocation causing BCL2 protein overexpression. A proportion of follicular lymphomas do not carry the t(14;18) translocation and lacked BCL2 protein expression. We describe a case of a BCL2 protein- and t(14;18)-negative follicular lymphoma that caused diagnostic difficulty. The usefulness of several immunomarkers including Ki67, CD79a and CD21 in aiding the diagnosis is discussed. The patient is a 51-year-old male who presented with gradually enlarging lymphadenopathy. Histopathological examination of the lymph node showed complete architectural effacement by neoplastic follicles containing expanded CD21-positive follicular dendritic cell meshwork. The neoplastic cells expressed pan-B cell markers (CD20, CD79a) and germinal centre marker (BCL6) but not BCL2 and CD10. Of interest are the staining patterns of Ki67 and CD79a. We observed that the Ki67- positive proliferating cells were evenly distributed within the neoplastic follicles without zonation. In addition, CD79a was homogeneously strong within the neoplastic follicles. These staining patterns were distinctly different from that observed in reactive lymphoid follicles. Fluorescent insitu hybridisation (FISH) analysis however showed absence of BCL2 gene rearrangement. Despite the atypical immunophenotype and lack of BCL2 gene rearrangement, the diagnosis of follicular lymphoma was made based on careful observation of the morphology as well as immunoarchitecture of the Ki67, CD79a and CD21 markers.

Han SS, Han S, Kamberos NL
Piperlongumine inhibits the proliferation and survival of B-cell acute lymphoblastic leukemia cell lines irrespective of glucocorticoid resistance.
Biochem Biophys Res Commun. 2014; 452(3):669-75 [PubMed] Related Publications
Piperlongumine (PL), a pepper plant alkaloid from Piper longum, has anti-inflammatory and anti-cancer properties. PL selectively kills both solid and hematologic cancer cells, but not normal counterparts. Here we evaluated the effect of PL on the proliferation and survival of B-cell acute lymphoblastic leukemia (B-ALL), including glucocorticoid (GC)-resistant B-ALL. Regardless of GC-resistance, PL inhibited the proliferation of all B-ALL cell lines, but not normal B cells, in a dose- and time-dependent manner and induced apoptosis via elevation of ROS. Interestingly, PL did not sensitize most of B-ALL cell lines to dexamethasone (DEX). Only UoC-B1 exhibited a weak synergistic effect between PL and DEX. All B-ALL cell lines tested exhibited constitutive activation of multiple transcription factors (TFs), including AP-1, MYC, NF-κB, SP1, STAT1, STAT3, STAT6 and YY1. Treatment of the B-ALL cells with PL significantly downregulated these TFs and modulated their target genes. While activation of AURKB, BIRC5, E2F1, and MYB mRNA levels were significantly downregulated by PL, but SOX4 and XBP levels were increased by PL. Intriguingly, PL also increased the expression of p21 in B-ALL cells through a p53-independent mechanism. Given that these TFs and their target genes play critical roles in a variety of hematological malignancies, our findings provide a strong preclinical rationale for considering PL as a new therapeutic agent for the treatment of B-cell malignancies, including B-ALL and GC-resistant B-ALL.

Okon IS, Coughlan KA, Zhang C, et al.
Protein kinase LKB1 promotes RAB7-mediated neuropilin-1 degradation to inhibit angiogenesis.
J Clin Invest. 2014; 124(10):4590-602 [PubMed] Free Access to Full Article Related Publications
After internalization, transmembrane receptors (TMRs) are typically recycled back to the cell surface or targeted for degradation. Efficient TMR trafficking is critical for regulation of several processes, including signal transduction pathways, development, and disease. Here, we determined that trafficking of the angiogenic receptor neuropilin-1 (NRP-1) is abrogated by the liver kinase B1 (LKB1), a serine-threonine kinase of the calcium calmodulin family. We found that aberrant NRP-1 expression in tumor cells from patients with lung adenocarcinoma is associated with decreased levels of LKB1. In cultured lung cells, LKB1 accentuated formation of a complex between NRP-1 and RAB7 in late endosomes. LKB1 specifically bound GTP-bound RAB7, but not a dominant-negative GDP-bound form of RAB7, promoting rapid transfer and lysosome degradation of NRP-1. siRNA-mediated depletion of RAB7 disrupted the transfer of NRP-1 to the lysosome, resulting in recovery of the receptor as well as increased tumor growth and angiogenesis. Together, our findings indicate that LKB1 functions as a RAB7 effector and suppresses angiogenesis by promoting the cellular trafficking of NRP-1 from RAB7 vesicles to the lysosome for degradation. Furthermore, these data suggest that LKB1 and NRP-1 have potential as therapeutic targets for limiting tumorigenesis.

Kasim M, Benko E, Winkelmann A, et al.
Shutdown of achaete-scute homolog-1 expression by heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 in hypoxia.
J Biol Chem. 2014; 289(39):26973-88 [PubMed] Article available free on PMC after 26/09/2015 Related Publications
The basic helix-loop-helix transcription factor hASH1, encoded by the ASCL1 gene, plays an important role in neurogenesis and tumor development. Recent findings indicate that local oxygen tension is a critical determinant for the progression of neuroblastomas. Here we investigated the molecular mechanisms underlying the oxygen-dependent expression of hASH1 in neuroblastoma cells. Exposure of human neuroblastoma-derived Kelly cells to 1% O2 significantly decreased ASCL1 mRNA and hASH1 protein levels. Using reporter gene assays, we show that the response of hASH1 to hypoxia is mediated mainly by post-transcriptional inhibition via the ASCL1 mRNA 5'- and 3'-UTRs, whereas additional inhibition of the ASCL1 promoter was observed under prolonged hypoxia. By RNA pulldown experiments followed by MALDI/TOF-MS analysis, we identified heterogeneous nuclear ribonucleoprotein (hnRNP)-A2/B1 and hnRNP-R as interactors binding directly to the ASCL1 mRNA 5'- and 3'-UTRs and influencing its expression. We further demonstrate that hnRNP-A2/B1 is a key positive regulator of ASCL1, findings that were also confirmed by analysis of a large compilation of gene expression data. Our data suggest that a prominent down-regulation of hnRNP-A2/B1 during hypoxia is associated with the post-transcriptional suppression of hASH1 synthesis. This novel post-transcriptional mechanism for regulating hASH1 levels will have important implications in neural cell fate development and disease.

Laursen MB, Falgreen S, Bødker JS, et al.
Human B-cell cancer cell lines as a preclinical model for studies of drug effect in diffuse large B-cell lymphoma and multiple myeloma.
Exp Hematol. 2014; 42(11):927-38 [PubMed] Related Publications
Drug resistance in cancer refers to recurrent or primary refractory disease following drug therapy. At the cellular level, it is a consequence of molecular functions that ultimately enable the cell to resist cell death-one of the classical hallmarks of cancer. Thus, drug resistance is a fundamental aspect of the cancer cell phenotype, in parallel with sustained proliferation, immortality, angiogenesis, invasion, and metastasis. Here we present a preclinical model of human B-cell cancer cell lines used to identify genes involved in specific drug resistance. This process includes a standardized technical setup for specific drug screening, analysis of global gene expression, and the statistical considerations required to develop resistance gene signatures. The state of the art is illustrated by the first-step classical drug screen (including the CD20 antibody rituximab, the DNA intercalating topoisomerase II inhibitor doxorubicin, the mitotic inhibitor vincristine, and the alkylating agents cyclophosphamide and melphalan) along with the generation of gene lists predicting the chemotherapeutic outcome as validated retrospectively in clinical trial datasets. This B-cell lineage-specific preclinical model will allow us to initiate a range of laboratory studies, with focus on specific gene functions involved in molecular resistance mechanisms.

Byrd JC, Jones JJ, Woyach JA, et al.
Entering the era of targeted therapy for chronic lymphocytic leukemia: impact on the practicing clinician.
J Clin Oncol. 2014; 32(27):3039-47 [PubMed] Article available free on PMC after 20/09/2015 Related Publications
PURPOSE: Chemoimmunotherapy has been the standard of care for chronic lymphocytic leukemia (CLL). However, the introduction of B-cell receptor (BCR) kinase inhibitors such as ibrutinib has the potential to eliminate the role of chemotherapy in the treatment of CLL. How to best incorporate old and new therapies for CLL in this landscape is increasingly complex.
METHODS: This article reviews current data available to clinicians and integrates these data to provide a strategy that can be used to approach the treatment of CLL in the era of BCR signaling inhibitors.
RESULTS: Current strategies separate patients based on age or functional status as well as genetics [presence or absence of del(17)(p13.1)]. In the era of targeted therapy, this will likely continue based on current available data. Phase III studies support chemoimmunotherapy as the initial standard therapy for patients without del(17)(p13.1). Choice of chemotherapy (fludarabine plus cyclophosphamide, bendamustine, or chlorambucil) and anti-CD20 antibody (rituximab, ofatumumab, or obinutuzumab) varies based on regimen and patient status. For patients with del(17)(p13.1), no standard initial therapy exists, although several options supported by phase II clinical trials (methylprednisolone plus alemtuzumab or ibrutinib) seem better than chemoimmunotherapy. Treatment of relapsed CLL seems to be best supported by ibrutinib-based therapy. Completion of trials with ibrutinib and other new agents in the near future will offer opportunity for chemotherapy-free treatment across all groups of CLL.
CONCLUSION: Therapy for CLL has evolved significantly over the past decade with introduction of targeted therapy for CLL. This has the potential to completely transform how CLL is treated in the future.

Co NN, Iglesias D, Celestino J, et al.
Loss of LKB1 in high-grade endometrial carcinoma: LKB1 is a novel transcriptional target of p53.
Cancer. 2014; 120(22):3457-68 [PubMed] Article available free on PMC after 15/11/2015 Related Publications
BACKGROUND: Liver kinase B1 (LKB1) is a serine/threonine kinase that functions as a tumor suppressor and regulates cell polarity, proliferation, and metabolism. Mutations in LKB1 are associated with Peutz-Jeghers syndrome as well as sporadic cervical and lung cancers. Although LKB1-null mice develop invasive endometrial cancers, the role and regulation of LKB1 in the pathogenesis of human endometrial cancer are not well defined and are the focus of these studies.
METHODS: LKB1 protein and messenger RNA (mRNA) expression levels were evaluated in high-grade and low-grade endometrioid endometrial cancer (EEC) and cell lines by reverse transcriptase-polymerase chain reaction analysis, Western blot analysis, and immunohistochemistry. Mutational and promoter analyses of the LKB1 gene (serine/threonine kinase 11 [STK11]) were performed to identify the mechanisms that contribute to the loss of LKB1 in high-grade EEC.
RESULTS: Analysis of the LKB1 gene in low-grade and high-grade EECs revealed no genetic mutations, suggesting that alterations in LKB1 transcription may be responsible for LKB1 protein loss in high-grade EEC. Analysis of the LKB1 promoter revealed 4 putative tumor protein 53 (p53) binding sites. Quantitative chromatin immunoprecipitation demonstrated that p53 bound directly to 1 of these sites and increased LKB1 promoter activity 140-fold. LKB1 promoter activity, mRNA, and protein levels were suppressed after silencing of p53 with small interfering RNA and were elevated in cells that overexpressed p53. Levels of p53 mRNA and protein expression were decreased in high-grade EEC and were positively correlated with LKB1 protein levels (Spearman correlation, r=0.601; P<.001).
CONCLUSIONS: LKB1 is a direct transcriptional target of p53. The loss of wild-type p53 in high-grade EEC may contribute to the LKB1 loss observed in these more aggressive tumors.

Choe JY, Bisig B, de Leval L, Jeon YK
Primary γδ T cell lymphoma of the lung: report of a case with features suggesting derivation from intraepithelial γδ T lymphocytes.
Virchows Arch. 2014; 465(6):731-6 [PubMed] Related Publications
T cell lymphoma of γδ T cell origin is a rare disease that mainly involves extranodal sites and shows aggressive clinical behavior. Here, we report a case of primary γδ T cell lymphoma of the lungs with epitheliotropism in the respiratory epithelium, a feature somewhat reminiscent of what is observed in enteropathy-associated T cell lymphoma. A 63-year-old man presented with chest pain and dyspnea on exertion, weight loss, and general weakness. On a positron emission tomography (PET) scan, multiple hypermetabolic lesions were found in both lungs. Microscopic examination of the wedge lung biopsy revealed nodular infiltration of monomorphic, medium- to large-sized atypical lymphocytes with round nuclei, coarse chromatin, and a variable amount of clear to eosinophilic cytoplasm. Of note, intraepithelial lymphocytosis by atypical lymphoid cells was observed in the respiratory epithelium within and around the nodule. Immunohistochemically, the tumor cells were CD3+, TCRβF1-, TCRγ+, CD5-, CD7+, CD20-, CD79a-, CD30-, CD4-, CD8-, CD10-, BCL6-, CD21-, CD56+, CD57-, and CD138-, and expressed cytotoxic molecules. Epstein-Barr virus (EBV) was not detected by an in situ hybridization assay for EBV-encoded RNA. Interestingly, CD103 was expressed by a subset of tumor cells, especially those infiltrating the epithelium. T cell clonality was detected by multiplex PCR analysis of TRG and TRD gene rearrangements. After 2 months of systemic chemotherapy, PET scan showed regression of the size and metabolic activity of the lesions. This case represents a unique γδ T cell lymphoma of the lungs showing epitheliotropism by CD103+ γδ T cells that is suggestive of tissue-resident γδ T cells as the cell of origin.

Mehrotra A, Saladi SV, Trivedi AR, et al.
Modulation of Brahma expression by the mitogen-activated protein kinase/extracellular signal regulated kinase pathway is associated with changes in melanoma proliferation.
Arch Biochem Biophys. 2014; 563:125-35 [PubMed] Article available free on PMC after 01/12/2015 Related Publications
Brahma (BRM) and Brahma-related gene 1(BRG1) are catalytic subunits of SWItch/sucrose non-fermentable (SWI/SNF) chromatin remodeling complexes. BRM is epigenetically silenced in a wide-range of tumors. Mutations in the v-raf murine sarcoma viral oncogene homolog B1 (BRAF) gene occur frequently in melanoma and lead to constitutive activation of the mitogen-activated protein kinase (MAPK)/extracellular signal regulated kinase (ERK1/2) pathway. We tested the hypothesis that BRM expression is modulated by oncogenic BRAF and phosphorylation of ERK1/2 in melanocytes and melanoma cells. Expression of oncogenic BRAF in melanocytes and melanoma cells that are wild-type for BRAF decreased BRM expression and increased BRG1 expression. Inhibition of mitogen-activated protein/extracellular signal-regulated kinase kinase (MEK) or selective inhibition of BRAF in melanoma cells that harbor oncogenic BRAF increased BRM expression and decreased BRG1 expression. Increased BRM expression was associated with increased histone acetylation on the BRM promoter. Over-expression of BRM in melanoma cells that harbor oncogenic BRAF promoted changes in cell cycle progression and apoptosis consistent with a tumor suppressive role. Upon inhibition of BRAF(V600E) with PLX4032, BRM promoted survival. PLX4032 induced changes in BRM function were correlated with increased acetylation of the BRM protein. This study provides insights into the epigenetic consequences of inhibiting oncogenic BRAF in melanoma through modulation of SWI/SNF subunit expression and function.

Valenzuela M, Glorieux C, Stockis J, et al.
Retinoic acid synergizes ATO-mediated cytotoxicity by precluding Nrf2 activity in AML cells.
Br J Cancer. 2014; 111(5):874-82 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
BACKGROUND: Standard therapy for acute promyelocytic leukaemia (APL) includes retinoic acid (all-trans retinoic acid (ATRA)), which promotes differentiation of promyelocytic blasts. Although co-administration of arsenic trioxide (ATO) with ATRA has emerged as an effective option to treat APL, the molecular basis of this effect remains unclear.
METHODS: Four leukaemia cancer human models (HL60, THP-1, NBR4 and NBR4-R2 cells) were treated either with ATO alone or ATO plus ATRA. Cancer cell survival was monitored by trypan blue exclusion and DEVDase activity assays. Gene and protein expression changes were assessed by RT-PCR and western blot.
RESULTS: ATO induced an antioxidant response characterised by Nrf2 nuclear translocation and enhanced transcription of downstream target genes (that is, HO-1, NQO1, GCLM, ferritin). In cells exposed to ATO plus ATRA, the Nrf2 nuclear translocation was prevented and cytotoxicity was enhanced. HO-1 overexpression reversed partially the cytotoxicity by ATRA-ATO in HL60 cells. The inhibitory effects of ATRA on ATO-mediated responses were not observed in either the ATRA-resistant NB4-R2 cells or in NB4 cells pre-incubated with the RARα antagonist Ro-41-52-53.
CONCLUSIONS: The augmented cytotoxicity observed in leukaemia cells following combined ATO-ATRA treatment is likely due to inhibition of Nrf2 activity, thus explaining the efficacy of combined ATO-ATRA treatment in the APL therapy.

Barceló C, Etchin J, Mansour MR, et al.
Ribonucleoprotein HNRNPA2B1 interacts with and regulates oncogenic KRAS in pancreatic ductal adenocarcinoma cells.
Gastroenterology. 2014; 147(4):882-892.e8 [PubMed] Related Publications
BACKGROUND & AIMS: Development of pancreatic ductal adenocarcinoma (PDAC) involves activation of c-Ki-ras2 Kirsten rat sarcoma oncogene homolog (KRAS) signaling, but little is known about the roles of proteins that regulate the activity of oncogenic KRAS. We investigated the activities of proteins that interact with KRAS in PDAC cells.
METHODS: We used mass spectrometry to demonstrate that heterogeneous nuclear ribonucleoproteins (HNRNP) A2 and B1 (encoded by the gene HNRNPA2B1) interact with KRAS G12V. We used co-immunoprecipitation analyses to study interactions between HNRNPA2B1 and KRAS in KRAS-dependent and KRAS-independent PDAC cell lines. We knocked down HNRNPA2B1 using small hairpin RNAs and measured viability, anchorage-independent proliferation, and growth of xenograft tumors in mice. We studied KRAS phosphorylation using the Phos-tag system.
RESULTS: We found that interactions between HRNPA2B1 and KRAS correlated with KRAS-dependency of some human PDAC cell lines. Knock down of HNRNPA2B1 significantly reduced viability, anchorage-independent proliferation, and formation of xenograft tumors by KRAS-dependent PDAC cells. HNRNPA2B1 knock down also increased apoptosis of KRAS-dependent PDAC cells, inactivated c-akt murine thymoma oncogene homolog 1 signaling via mammalian target of rapamycin, and reduced interaction between KRAS and phosphatidylinositide 3-kinase. Interaction between HNRNPA2B1 and KRAS required KRAS phosphorylation at serine 181.
CONCLUSIONS: In KRAS-dependent PDAC cell lines, HNRNPA2B1 interacts with and regulates the activity of KRAS G12V and G12D. HNRNPA2B1 is required for KRAS activation of c-akt murine thymoma oncogene homolog 1-mammalian target of rapamycin signaling, interaction with phosphatidylinositide 3-kinase, and PDAC cell survival and tumor formation in mice. HNRNPA2B1 might be a target for treatment of pancreatic cancer.

Shim H, Ha JH, Lee H, et al.
Expression of myeloid antigen in neoplastic plasma cells is related to adverse prognosis in patients with multiple myeloma.
Biomed Res Int. 2014; 2014:893243 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
We evaluated the association between the expression of myeloid antigens on neoplastic plasma cells and patient prognosis. The expression status of CD13, CD19, CD20, CD33, CD38, CD56, and CD117 was analyzed on myeloma cells from 55 newly diagnosed patients, including 36 men (65%), of median age 61 years (range: 38-78). Analyzed clinical characteristics and laboratory parameters were as follows: serum β 2-microglobulin, lactate dehydrogenase, calcium, albumin, hemoglobin, serum creatinine concentrations, bone marrow histology, and cytogenetic findings. CD13+ and CD33+ were detected in 53% and 18%, respectively. Serum calcium (P = 0.049) and LDH (P = 0.018) concentrations were significantly higher and morphologic subtype of immature or plasmablastic was more frequent in CD33+ than in CD33- patients (P = 0.022). CD33 and CD13 expression demonstrate a potential prognostic impact and were associated with lower overall survival (OS; P = 0.001 and P = 0.025) in Kaplan-Meier analysis. Multivariate analysis showed that CD33 was independently prognostic of shorter progression free survival (PFS; P = 0.037) and OS (P = 0.001) with correction of clinical prognostic factors. This study showed that CD13 and CD33 expression associated with poor prognosis in patients with MM implicating the need of analysis of these markers in MM diagnosis.

Sebejova L, Borsky M, Jaskova Z, et al.
Distinct in vitro sensitivity of p53-mutated and ATM-mutated chronic lymphocytic leukemia cells to ofatumumab and rituximab.
Exp Hematol. 2014; 42(10):867-74.e1 [PubMed] Related Publications
Abnormalities in ATM and TP53 genes represent important predictive factors in chronic lymphocytic leukemia (CLL); however, the efficacy of CD20 targeting immunotherapy is only poorly defined in the affected patients. Therefore, we tested the in vitro response to ofatumumab (OFA) and rituximab (RTX) in 75 CLL samples with clearly defined p53 or ATM inactivation. Using standard conditions allowing complement-dependent cytotoxicity, i.e., 10 μg/mL of antibodies and 20% active human serum, we observed clear differences among the tested genetic categories: ATM-mutated samples (n = 17) represented the most sensitive, wild-type samples (n = 31) intermediate, and TP53-mutated samples (n = 27) the most resistant group (ATM-mut vs. TP53-mut: P = 0.0005 for OFA and P = 0.01 for RTX). The response correlated with distinct levels of CD20 and critical complement inhibitors CD55 and CD59; CD20 level median was the highest in ATM-mutated and the lowest in TP53-mutated samples (difference between the groups P < 0.01), while the total level of complement inhibitors (CD55 plus CD59) was distributed in the opposite manner (P < 0.01). Negligible response to both OFA and RTX was noted in all cultures (n = 10) tested in the absence of active serum, which strongly indicated that complement-dependent cytotoxicity was a principal cell death mechanism. Our study shows that (1) common genetic defects in CLL cells significantly impact a primary response to anti-CD20 monoclonal antibodies and (2) ATM-mutated patients with currently poor prognosis may potentially benefit from immunotherapy targeting CD20.

Yadav DS, Chattopadhyay I, Verma A, et al.
A pilot study evaluating genetic alterations that drive tobacco- and betel quid-associated oral cancer in Northeast India.
Tumour Biol. 2014; 35(9):9317-30 [PubMed] Related Publications
The susceptibility of an individual to oral cancer is mediated by genetic factors and carcinogen-exposure behaviors such as betel quid chewing, tobacco use, and alcohol consumption. This pilot study was aimed to identify the genetic alteration in 100 bp upstream and downstream flanking regions in addition to the exonic regions of 169 cancer-associated genes by using Next Generation sequencing with aim to elucidate the molecular pathogenesis of tobacco- and betel quid-associated oral cancer of Northeast India. To understand the role of chemical compounds present in tobacco and betel quid associated with the progression of oral cancer, single nucleotide polymorphisms (SNPs) and insertion and deletion (Indels) found in this study were analyzed for their association with chemical compounds found in tobacco and betel quid using Comparative Toxogenomic Database. Genes (AR, BRCA1, IL8, and TP53) with novel SNP were found to be associated with arecoline which is the major component of areca nut. Genes (BARD1, BRCA2, CCND2, IGF1R, MSH6, and RASSF1) with novel deletion and genes (APC, BRMS1, CDK2AP1, CDKN2B, GAS1, IGF1R, and RB1) with novel insertion were found to be associated with aflatoxin B1 which is produced by fermented areca nut. Genes (ADH6, APC, AR, BARD1, BRMS1, CDKN1A, E2F1, FGFR4, FLNC, HRAS, IGF1R, IL12B, IL8, NBL1, STAT5B, and TP53) with novel SNP were found to be associated with aflatoxin B1. Genes (ATM, BRCA1, CDKN1A, EGFR, IL8, and TP53) with novel SNP were found to be associated with tobacco specific nitrosamines.

Roshan S, Liu YY, Banafa A, et al.
Fucoidan induces apoptosis of HepG2 cells by down-regulating p-Stat3.
J Huazhong Univ Sci Technolog Med Sci. 2014; 34(3):330-6 [PubMed] Related Publications
Fucoidan is one of the main bioactive components of polysaccharides. The current study was focused on the anti-tumor effects of fucoidan on human heptoma cell line HepG2 and the possible mechanisms. Fucoidan treatment resulted in cell cycle arrest and apoptosis of HepG2 cells in a dose-dependent manner detected by MTT assay, flow cytometry and fluorescent microscopy. The results of flow cytometric analysis revealed that fucoidan induced G2/M arrest in the cell cycle progression. Hoechst 33258 and Annexin V/PI staining results showed that the apoptotic cell number was increased, which was associated with a dose-dependent up-regulation of Bax and down-regulation of Bcl-2 and p-Stat3. In parallel, the up-regulation of p53 and the increase in reactive oxygen species were also observed, which may play important roles in the inhibition of HepG2 growth by fucoidan. In the meantime, Cyclin B1 and CDK1 were down-regulated by fucoidan treatment. Down-regulation of p-Stat3 by fucoidan resulted in apoptosis and an increase in ROS in response to fucoidan exposure. We therefore concluded that fucoidan induces apoptosis through the down-regulation of p-Stat3. These results suggest that fucoidan may be used as a novel anti-cancer agent for hepatocarcinoma.

Xu XD, Yang L, Zheng LY, et al.
Suberoylanilide hydroxamic acid, an inhibitor of histone deacetylase, suppresses vasculogenic mimicry and proliferation of highly aggressive pancreatic cancer PaTu8988 cells.
BMC Cancer. 2014; 14:373 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
BACKGROUND: Pancreatic cancer is one of the most aggressive human malignancies with a extremely low 5-year survival rate. Hence, the search for more effective anti-pancreatic cancer agents is urgent.
METHODS: PaTu8988 pancreatic cancer cells were treated with different concentrations of suberoylanilide hydroxamic acid (SAHA), cell survival, proliferation, migration and vasculogenic mimicry (VM) were analyzed. Associated signaling changes were also analyzed by RT-PCR and Western blots.
RESULTS: Here, we reported that SAHA, a histone deacetylase inhibitor (HDACi), exerted significant inhibitory efficiency against pancreatic cancer cell survival, proliferation, migration and VM. SAHA dose-dependently inhibited PaTu8988 pancreatic cancer cell growth with the IC-50 of 3.4 ± 0. 7 μM. Meanwhile, SAHA suppressed PaTu8988 cell cycle progression through inducing G2/M arrest, which was associated with cyclin-dependent kinase 1 (CDK-1)/cyclin-B1 degradation and p21/p27 upregulation. Further, SAHA induced both apoptotic and non-apoptotic death of PaTu8988 cells. Significantly, SAHA suppressed PaTu8988 cell in vitro migration and cell-dominant tube formation or VM, which was accompanied by semaphorin-4D (Sema-4D) and integrin-β5 down-regulation. Our evidences showed that Akt activation might be important for Sema-4D expression in PaTu8988 cells, and SAHA-induced Sema-4D down-regulation might be associated with Akt inhibition.
CONCLUSIONS: This study is among the first to report the VM formation in cultured human pancreatic cancer cells. And we provided strong evidence to suggest that SAHA executes significant anti-VM efficiency in the progressive pancreatic cancer cells. Thus, SAHA could be further investigated as a promising anti-pancreatic cancer agent.

Xue C, Zhang Z, Yu H, et al.
Up-regulation of CNDP2 facilitates the proliferation of colon cancer.
BMC Gastroenterol. 2014; 14:96 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
BACKGROUND: Cytosolic nonspecific dipetidase (CN2) belongs to the family of M20 metallopeptidases. It was stated in previous articles that higher expression levels of CN2 were observed in renal cell carcinoma and breast cancer. Our study explored the correlation between CN2 and colon carcinogenesis.
METHODS: We analysed the relationship between 183 patients clinicopathological characteristics and its CN2 expression. To detect the levels of CN2 in colon cancer cell lines and colon cancer tissues by western blot. To verify cell proliferation in colon cancer cells with knockdown of CNDP2 and explore the causes of these phenomena.
RESULTS: The expression levels of CN2 in clinical colon tumors and colon cancer cell lines were significantly higher than that in normal colon mucosa and colon cell lines. The difference in CN2 levels was associated with tumor location (right- and left-sided colon cancer), but there was no significant association with age, gender, tumor size, tumor grade, tumor stage or serum carcinoembryonic antigen (CEA). Knockdown of CNDP2 inhibited cell proliferation, blocked cell cycle progression and retarded carcinogenesis in an animal model. The signaling pathway through which knockdown of CNDP2 inhibited cell proliferation and tumorigenesis involved in EGFR, cyclin B1 and cyclin E.
CONCLUSIONS: Knockdown of CNDP2 can inhibit the proliferation of colon cancer in vitro and retarded carcinogenesis in vivo.

Naderi A, Vanneste M
Prolactin-induced protein is required for cell cycle progression in breast cancer.
Neoplasia. 2014; 16(4):329-42.e1-14 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
Prolactin-induced protein (PIP) is expressed in the majority of breast cancers and is used for the diagnostic evaluation of this disease as a characteristic biomarker; however, the molecular mechanisms of PIP function in breast cancer have remained largely unknown. In this study, we carried out a comprehensive investigation of PIP function using PIP silencing in a broad group of breast cancer cell lines, analysis of expression microarray data, proteomic analysis using mass spectrometry, and biomarker studies on breast tumors. We demonstrated that PIP is required for the progression through G1 phase, mitosis, and cytokinesis in luminal A, luminal B, and molecular apocrine breast cancer cells. In addition, PIP expression is associated with a transcriptional signature enriched with cell cycle genes and regulates key genes in this process including cyclin D1, cyclin B1, BUB1, and forkhead box M1 (FOXM1). It is notable that defects in mitotic transition and cytokinesis following PIP silencing are accompanied by an increase in aneuploidy of breast cancer cells. Importantly, we have identified novel PIP-binding partners in breast cancer and shown that PIP binds to β-tubulin and is necessary for microtubule polymerization. Furthermore, PIP interacts with actin-binding proteins including Arp2/3 and is needed for inside-out activation of integrin-β1 mediated through talin. This study suggests that PIP is required for cell cycle progression in breast cancer and provides a rationale for exploring PIP inhibition as a therapeutic approach in breast cancer that can potentially target microtubule polymerization.

Dai L, Li J, Ortega R, et al.
Preferential autoimmune response in prostate cancer to cyclin B1 in a panel of tumor-associated antigens.
J Immunol Res. 2014; 2014:827827 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
Previous studies have demonstrated that sera from patients with prostate cancer (PCa) contain autoantibodies that react with tumor-associated antigens (TAAs). Autoantibodies to cyclin B1 and fourteen other TAAs were detected by enzyme-linked immunosorbent assay (ELISA) and Western blotting in 464 sera from patients with PCa, benign prostatic hyperplasia (BPH), and other controls. Autoantibodies to cyclin B1 were detected in 31.0% of sera from randomly selected patients with PCa versus 4.8% in sera with BPH. In the further analysis, 31.4% of sera from PCa patients at the early stage contained anti-cyclin B1 autoantibody, and even 29.4% of patients who had normal prostate-specific antigen (PSA) levels in their serum samples were observed anti-cyclin B1 positive. The cumulative positive rate of autoantibodies against seven selected TAAs (cyclin B1, survivin, p53, DFS70/LEDGFp75, RalA, MDM2, and NPM1) in PCa reached 80.5%, significantly higher than that in normal control sera. In summary, autoantibody to cyclin B1 might be a potential biomarker for the immunodiagnosis of early stage PCa, especially useful in patients with normal PSA level. This study further supports the hypothesis that a customized TAA array can be used for enhancing anti-TAA autoantibody detection, and it may constitute a promising and powerful tool for immunodiagnosis of PCa.

Xu H, Choe C, Shin SH, et al.
Silencing of KIF14 interferes with cell cycle progression and cytokinesis by blocking the p27(Kip1) ubiquitination pathway in hepatocellular carcinoma.
Exp Mol Med. 2014; 46:e97 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
Although it has been suggested that kinesin family member 14 (KIF14) has oncogenic potential in various cancers, including hepatocellular carcinoma (HCC), the molecular mechanism of this potential remains unknown. We aimed to elucidate the role of KIF14 in hepatocarcinogenesis by knocking down KIF14 in HCC cells that overexpressed KIF14. After KIF14 knockdown, changes in tumor cell growth, cell cycle and cytokinesis were examined. We also examined cell cycle regulatory molecules and upstream Skp1/Cul1/F-box (SCF) complex molecules. Knockdown of KIF14 resulted in suppression of cell proliferation and failure of cytokinesis, whereas KIF14 overexpression increased cell proliferation. In KIF14-silenced cells, the levels of cyclins E1, D1 and B1 were profoundly decreased compared with control cells. Of the cyclin-dependent kinase inhibitors, the p27(Kip1) protein level specifically increased after KIF14 knockdown. The increase in p27(Kip1) was not due to elevation of its mRNA level, but was due to inhibition of the proteasome-dependent degradation pathway. To explore the pathway upstream of this event, we measured the levels of SCF complex molecules, including Skp1, Skp2, Cul1, Roc1 and Cks1. The levels of Skp2 and its cofactor Cks1 decreased in the KIF14 knockdown cells where p27(Kip1) accumulated. Overexpression of Skp2 in the KIF14 knockdown cells attenuated the failure of cytokinesis. On the basis of these results, we postulate that KIF14 knockdown downregulates the expression of Skp2 and Cks1, which target p27(Kip1) for degradation by the 26S proteasome, leading to accumulation of p27(Kip1). The downregulation of Skp2 and Cks1 also resulted in cytokinesis failure, which may inhibit tumor growth. To the best of our knowledge, this is the first report that has identified the molecular target and oncogenic effect of KIF14 in HCC.

Kempf W, Kazakov DV, Rütten A, et al.
Primary cutaneous follicle center lymphoma with diffuse CD30 expression: a report of 4 cases of a rare variant.
J Am Acad Dermatol. 2014; 71(3):548-54 [PubMed] Related Publications
BACKGROUND: CD30 is expressed in aggressive and Epstein-Barr virus-associated forms of B-cell non-Hodgkin lymphomas, but is rarely expressed by the majority of tumor cells in primary cutaneous B-cell lymphomas (CBCLs). The expression of CD30 in CBCLs may be at risk for misinterpretation as an unequivocal indicator of a highly aggressive form of the disease.
OBJECTIVE: We report 4 cases of low malignant primary cutaneous follicle center lymphoma (PCFCL) with diffuse and strong expression of CD30 by the majority of neoplastic cells.
RESULTS: The patients included 3 men and 1 woman with tumors on the scalp (3 patients) and chest wall (1 patient). The histologic examinations revealed a mixed, diffuse, and follicular growth pattern with CD20(+), bcl-6(+), and bcl-2(-) tumor cells. Seventy percent to 90% of the tumor cells expressed CD30. Clonal rearrangement of immunoglobulin heavy chain genes was found in 1 of 4 cases. None of the 3 cases yielded positivity for Epstein-Barr virus RNA.
LIMITATIONS: The study is limited by the small number of patients.
CONCLUSIONS: This rare variant of CD30(+) PCFCL needs be distinguished from CD30(+) aggressive B-cell lymphomas. CD30 in this variant of CBCLs may serve as a therapeutic target for anti-CD30 antibody-based strategies.

Wang Y, Xia H, Zhuang Z, et al.
Axl-altered microRNAs regulate tumorigenicity and gefitinib resistance in lung cancer.
Cell Death Dis. 2014; 5:e1227 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
The involvement of Axl kinase in non-small cell lung cancer's (NSCLC) acquired resistance to tyrosine kinase inhibitors (TKIs) gefitinib or erlotinib has been identified recently, but the mechanism by which Axl contributes to TKI resistance is largely unknown. MicroRNAs (miRNAs) repress gene expression and their critical role in tumorigenesis has been implicated. To investigate the role of miRNAs in the Axl-mediated acquired gefitinib resistance, we examined the Axl-mediated miRNA changes in gefitinib-resistant lung cancers. A panel of Axl kinase-altered miRNAs was identified. In this study, we validate and report that miR-374a and miR-548b modulated by Axl have essential roles in cell cycle arrest, gefitinib-induced apoptosis, epithelial-to-mesenchymal transition, migration and tumorigenesis of gefitinib-resistant lung cancer cells in vitro and in vivo by targeting Wnt5a and CCNB1 genes, respectively. Of clinical significance, high expression of Axl and miR-374a and low expression of miR-548b are associated with poor disease-free survival postoperatively. These findings indicate that the modulation of specific miRNAs may provide a therapeutic target to treat or reverse gefitinib resistance in NSCLC with high expression of Axl in the future.

Wang JF, Feng JG, Han J, et al.
The molecular mechanisms of Tanshinone IIA on the apoptosis and arrest of human esophageal carcinoma cells.
Biomed Res Int. 2014; 2014:582730 [PubMed] Article available free on PMC after 26/08/2015 Related Publications
OBJECTIVE: To explore the possible mechanisms of Tanshinone IIA (TanIIA) on esophageal carcinoma cell lines.
METHODS: Two human esophageal carcinoma cell lines (EC-1 cells and ECa-109 cells) were treated with different concentrations of TanIIA. Cell proliferation was measured by CCK-8, colony-forming efficiency was calculated, cell cycle and apoptosis were measured, and changes in cell cycle- and apoptosis-related gene expression were measured by Western blotting.
RESULTS: The CCK-8 and colony formation assay indicated that TanIIA inhibited the cell proliferation of human esophageal cancer cells (IC50 below 1 μg/mL) at 48 h. Hoechst 33258 and flow cytometry showed that TanIIA induced apoptosis in both esophageal cancer cell lines. Flow cytometry showed that TanIIA arrested cell cycle in S phase and G2/M phase. Western blotting analysis showed that Akt1 and its phosphorylation were inhibited, the Bax/Bcl-2 ratio increased, and both caspase-9 and caspase-3 were activated after treatment with 1.3 μg/mL TanIIA at 48 h. Meanwhile, p53 and p21 protein levels increased, whereas cyclin B1, CDC2, and CDC2 phosphorylation were inhibited.
CONCLUSION: TanIIA inhibits the growth of esophageal cancer cells and induces apoptosis in a time-dependent and concentration-dependent manner, possibly by affecting cell cycle- and apoptosis-related signaling pathways.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. MS4A1, Cancer Genetics Web: Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999