Gene Summary

Gene:LGALS4; galectin 4
Aliases: GAL4, L36LBP
Summary:The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. The expression of this gene is restricted to small intestine, colon, and rectum, and it is underexpressed in colorectal cancer. [provided by RefSeq, Jul 2008]
Databases:OMIM, HGNC, Ensembl, GeneCard, Gene
Source:NCBIAccessed: 30 August, 2019


What does this gene/protein do?
Show (4)

Cancer Overview

Research Indicators

Publications Per Year (1994-2019)
Graph generated 30 August 2019 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 30 August, 2019 using data from PubMed, MeSH and CancerIndex

Specific Cancers (7)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: LGALS4 (cancer-related)

Tegeder I, Thiel K, Erkek S, et al.
Functional relevance of genes predicted to be affected by epigenetic alterations in atypical teratoid/rhabdoid tumors.
J Neurooncol. 2019; 141(1):43-55 [PubMed] Related Publications
PURPOSE: Atypical teratoid/rhabdoid tumor (ATRT) is a highly malignant brain tumor predominantly arising in infants. Mutations of SWI/SNF chromatin remodeling complex members SMARCB1/INI1 or (rarely) SMARCA4/Brg1 are the sole recurrent genetic lesions. Epigenetic studies revealed a large number of genes predicted to be affected by differential histone modifications in ATRT, but the role of these genes in the biology of ATRT remains uncertain. We therefore aimed at exploring the role of these genes in the detrimental effects of SMARCB1-deficiency.
METHODS: The functional relevance of 1083 genes predicted to be affected by epigenetic alterations in ATRT was examined in vivo using a Drosophila melanogaster model of SMARCB1-deficiency. Human orthologues of genes whose knockdown modified the phenotype in the Gal4-UAS fly model were further examined in ATRT samples and SMARCB1-deficient rhabdoid tumor cells.
RESULTS: Knockdown of Snr1, the fly orthologue of SMARCB1, resulted in a lethal phenotype and epigenetic alterations in the fly model. The lethal phenotype was shifted to later stages of development upon additional siRNA knockdown of 89 of 1083 genes screened in vivo. These included TGF-beta receptor signaling pathway related genes, e.g. CG10348, the fly orthologue of transcriptional regulator PRDM16. Subsequently, PRDM16 was found to be over-expressed in ATRT samples and knockdown of PRDM16 in SMARCB1-deficient rhabdoid tumor cells reduced proliferation.
CONCLUSIONS: These results suggest that a subset of genes affected by differential histone modification in ATRT is involved in the detrimental effects of SMARCB1-deficiency and also relevant in the biology of ATRT.

Rodia MT, Solmi R, Pasini F, et al.
LGALS4, CEACAM6, TSPAN8, and COL1A2: Blood Markers for Colorectal Cancer-Validation in a Cohort of Subjects With Positive Fecal Immunochemical Test Result.
Clin Colorectal Cancer. 2018; 17(2):e217-e228 [PubMed] Related Publications
BACKGROUND: A noninvasive blood test for the early detection of colorectal cancer (CRC) is highly required. We evaluated a panel of 4 mRNAs as putative markers of CRC.
MATERIALS AND METHODS: We tested LGALS4, CEACAM6, TSPAN8, and COL1A2, referred to as the CELTiC panel, using quantitative reverse transcription polymerase chain reaction, on subjects with positive fecal immunochemical test (FIT) results and undergoing colonoscopy. Using a nonparametric test and multinomial logistic model, FIT-positive subjects were compared with CRC patients and healthy individuals.
RESULTS: All the genes of the CELTiC panel displayed statistically significant differences between the healthy subjects (n = 67), both low-risk (n = 36) and high-risk/CRC (n = 92) subjects, and those in the negative-colonoscopy, FIT-positive group (n = 36). The multinomial logistic model revealed LGALS4 was the most powerful marker discriminating the 4 groups. When assessing the diagnostic values by analysis of the areas under the receiver operating characteristic curves (AUCs), the CELTiC panel reached an AUC of 0.91 (sensitivity, 79%; specificity, 94%) comparing normal subjects to low-risk subjects, and 0.88 (sensitivity, 75%; specificity, 87%) comparing normal and high-risk/CRC subjects. The comparison between the normal subjects and the negative-colonoscopy, FIT-positive group revealed an AUC of 0.93 (sensitivity, 82%; specificity, 97%).
CONCLUSION: The CELTiC panel could represent a useful tool for discriminating subjects with positive FIT findings and for the early detection of precancerous adenomatous lesions and CRC.

Michaelsen SR, Urup T, Olsen LR, et al.
Molecular profiling of short-term and long-term surviving patients identifies CD34 mRNA level as prognostic for glioblastoma survival.
J Neurooncol. 2018; 137(3):533-542 [PubMed] Related Publications
Despite extensive treatment, overall survival (OS) for glioblastoma (GBM) remains poor. A small proportion of patients present long survival over 3 years, but the underlying molecular background separating these long-term survivors (LTS) from short-term survivors (STS) are insufficiently understood. Accordingly, study aim was to identify independent prognostic biomarkers for survival. Study cohort consisted of 93 primary GBM patients treated with radiation-, chemo- and bevacizumab therapy, among which 14 STS (OS ≤ 12 months) and 6 LTS (OS ≥ 36 months) were identified, all confirmed being IDH wild-type. RNA expression levels in diagnostic tumor specimen for 792 genes were analyzed by NanoString technology. While no differences were found with regard to GBM subtype between LTS versus STS, comparative analysis of individual genes identified 14 significantly differently expressed candidate genes. Univariate analysis in the whole patient cohort found that 12 of these were significantly associated with OS, of which increased IFNG, CXCL9, LGALS4, CD34 and decreased MGMT levels remained significant associated with prolonged OS in multivariate analysis correcting for known prognostic variables. Validation analyses in an independent dataset from the AVAglio study confirmed CD34 as significant in comparative analysis between STS and LTS patients and as an independent prognostic factor. Analysis of this dataset further supported CD34 expression to be associated with improved bevacizumab efficacy, while CD34 immunohistochemistry indicated variation in CD34 expression to result primarily from varying tumor vascularization. Collectively, CD34 expression candidates as a prognostic biomarker in GBM able to identify survival outliers and could also be predictive for efficacy of bevacizumab.

Zhuang C, Huang X, Zhuang C, et al.
Synthetic regulatory RNAs selectively suppress the progression of bladder cancer.
J Exp Clin Cancer Res. 2017; 36(1):151 [PubMed] Free Access to Full Article Related Publications
The traditional treatment for cancer is lack of specificity and efficacy. Modular synthetic regulatory RNAs, such as inhibitive RNA (iRNA) and active RNA (aRNA), may overcome these limitations. Here, we synthesize a new iRNA to bind the upstream activating sequence (UAS) of a minimal promoter that drives expression of artificial miRNAs (amiRNAs) targeting MYC, which represses the binding interaction between UAS and GAL4 fusion protein (GAL4-VP64) in GAL4/UAS system. The aRNA driven by a tumor-specific mutant human telomerase reverse transcriptase (hTERT) promoter is created to interact with iRNA to expose UAS again in bladder cancer. Without the aRNA, mRNA and protein levels of MYC, cell growth, cell apoptosis and cell migration were no significance in two bladder cancer cell lines, T24 and 5637, and human foreskin fibroblast (HFF) cells. The aRNA significantly inhibited the expression of MYC in mRNA and protein levels, as well as the proliferation and migration of the cancer cells, but not in HFF cells. These results indicated that regulatory RNAs selectively controlled the expression of amiRNAs and ultimately suppress the progression of bladder cancer cells without affecting normal cells. Synthetic regulatory RNAs might be a selective therapeutic approach for bladder cancer.

Huang X, Zhuang C, Zhuang C, et al.
An enhanced hTERT promoter-driven CRISPR/Cas9 system selectively inhibits the progression of bladder cancer cells.
Mol Biosyst. 2017; 13(9):1713-1721 [PubMed] Related Publications
The current therapies for treating tumors are lacking in efficacy and specificity. Synthetic biology principles may bring some new possible methods for curing cancer. Here we present a synthetic logic circuit based on the CRISPR/Cas9 system. The CRISPR/Cas9 technology has been applied in many biological fields, including cancer research. In this study, the expression of Cas9 nuclease was controlled indirectly by an enhanced hTERT promoter using the GAL4/upstream activating sequence (UAS) binding system. Cas9 was driven by 5XUAS, single guide RNA (sgRNA) was used to target mutant or wild-type HRAS, and the fusion gene GAL4-P65 was driven by the enhanced hTERT promoter. The system was tested in bladder cancer cells (T24 and 5637) and the results showed that the enhanced hTERT promoter could drive the expression of GAL4-P65 in these bladder cancer cell lines. Then all these devices were packed into lentivirus and the results of quantitative real-time PCR showed that the mRNA expression level of HRAS was selectively inhibited in the T24 and 5637 cells. The results of functional experiments suggested that the proliferation, cell migration and invasion were selectively suppressed, and that the apoptosis rate was increased in bladder cancer cells but not in human foreskin fibroblasts (HFF). In conclusion, we successfully constructed an enhanced hTERT promoter-driven CRISPR/Cas9 system and data showed that it could selectively suppress the progression of bladder cancer cells.

Wu MM, Li CF, Lin LF, et al.
Promoter hypermethylation of LGALS4 correlates with poor prognosis in patients with urothelial carcinoma.
Oncotarget. 2017; 8(14):23787-23802 [PubMed] Free Access to Full Article Related Publications
Galectine-4 (gal-4), encoded by the LGALS4 gene, was recently shown to exhibit a tumor suppressive effect in colorectal carcinoma and pancreatic adenocarcinoma, although how the expression of this gene is regulated remains unknown. No reports describe the significance of gal-4 in the malignant potential of urothelial tumors. Thus, we analyzed LGALS4 methylation and gene expression and their clinical relevance and biological function in urothelial carcinoma (UC). LGALS4 methylation was initially identified as a progression biomarker for UC patients through genome-wide DNA methylation profiling of 16 tumor samples. Bisulfite sequencing PCR and immunohistochemistry were performed to validate the promoter methylation and expression of LGALS4. We used quantitative methylation-specific PCR to determine the methylation levels of LGALS4 normalized to ACTB in the tumor samples of 79 UC patients and compared the levels between patients with different clinicopathological characteristics. The association with survival probability was analyzed with the Kaplan-Meier method and Cox regression analysis. The ectopic expression of gal-4 in cancer cell lines was used to address its biological function in UC in vitro. The promoter hypermethylation of LGALS4 (>2.51, log10 scale) revealed a positive correlation with high levels of both histological grade and tumor T category and with lymph node metastasis (all P≤0.001). In addition, LGALS4 hypermethylation was an independent predictor of inferior survival in UC patients (P<0.05). The ectopic expression studies demonstrated that gal-4 suppressed urothelial cancer cell growth, migration, and invasion. Thus, LGALS4 may function as a tumor suppressor gene in UC progression. Our findings provide evidence that methylation-mediated LGALS4 gene repression may be involved in urothelial tumor progression.

Rao US, Rao PS
Surface-bound galectin-4 regulates gene transcription and secretion of chemokines in human colorectal cancer cell lines.
Tumour Biol. 2017; 39(3):1010428317691687 [PubMed] Related Publications
One long-term complication of chronic intestinal inflammation is the development of colorectal cancer. However, the mechanisms linking inflammation to the colorectal tumorigenesis are poorly defined. Previously, we have demonstrated that galectin-4 is predominantly expressed in the luminal epithelia of the gastrointestinal tract, and its loss of expression plays a key role in the colorectal tumorigenesis. However, the mechanism by which galectin-4 regulates inflammation-induced tumorigenesis is unclear. Here, we show that galectin-4 secreted by the colorectal cancer cell lines was bound to the cell surface. Neutralization of surface-bound galectin-4 with anti-galectin-4 antibody resulted in increased cell proliferation with concomitant secretion of several chemokines into the extracellular medium. Neutralization of the surface-bound galectin-4 also resulted in the up-regulation of transcription of 29 genes, several of which are components of multiple inflammation signaling pathways. In an alternate experiment, binding of recombinant galectin-4 protein to cell surface of the galectin-4-negative colorectal cancer cells resulted in increased p27, and decreased cyclin D1 and c-Myc levels, leading to cell cycle arrest and apoptosis. Together, these data demonstrated that surface-bound galectin-4 is a dual function protein-down-regulating cell proliferation and chemokine secretion in galectin-4-expressing colorectal cancer cells on one hand and inducing apoptosis in galectin-4-negative colorectal cancer cells on the other hand.

Helwa R, Heller A, Knappskog S, Bauer AS
Tumor cells interact with red blood cells via galectin-4 - a short report.
Cell Oncol (Dordr). 2017; 40(4):401-409 [PubMed] Related Publications
BACKGROUND: The ability of tumor cells to invade and metastasize is relevant to the process of cancer progression and, as such, it represents an obstacle to cancer cure. So far, limited information is available on interactions between circulating tumor cells and blood cells. It is well-documented that galectin-4 is upregulated in many types of tumor cells and is involved in metastasis. Here, we address the hypothesis that tumor cells may interact with red blood cells (RBCs) via galectin-4.
METHODS: High galectin-4 expressing colon, normal pancreatic and pancreatic cancer-derived cell lines (n = 5) were incubated with peripheral blood cells from different donors. Their interactions and associated proteins were examined by immunostaining and live cell imaging.
RESULTS: We found that (endogenous or exogenous) galectin-4 expressing tumor cells interact directly with RBCs. We also observed an accumulation of galectin-4 and human blood group antigens at the contact sites between these cells. By comparing the number of RBCs attaching to each tumor cell, we found that cells with high pre-incubation expression levels of galectin-4 attached significantly more RBCs than those with low expression levels (p < 1 × 10
CONCLUSIONS: From our data we conclude that tumor cells directly interact with red blood cells via galectin-4.

Marikar FM, Jin G, Sheng W, et al.
Metallothionein 2A an interactive protein linking phosphorylated FADD to NF-κB pathway leads to colorectal cancer formation.
Chin Clin Oncol. 2016; 5(6):76 [PubMed] Related Publications
BACKGROUND: The rapid increase in the incidence rate of colorectal cancer has led to the search and identification of biomarkers that can predict risk for and future behavior of this malignancy and management. To study the biological role of the phosphorylated Fas associated death domain (pFADD) gene in colorectal cancer, we performed a GAL4-based yeast two-hybrid screening of a human heart cDNA library.
METHODS: A series of two yeast hybrid method was used to identification of protein-protein interaction. It was confirmed by glutathione S-transferase (GST) pull down assay and co-immunoprecipitation (co-IP). Three channeled fluorescence microscopy further confirmed the interaction in cellular level. Xenograft in vivo model was developed and knockdown relevant genes by RNAi techniques and confirmed the relationship which leads to colorectal cancer.
RESULTS: Using the FADD cDNA as bait, we identified six putative clones as associated proteins. The interaction of pFADD and metallothionein 2A (MT2A) was confirmed by GST pull-down assays in vitro and co-IP experiments in vivo. FADD co-localized with MT2A mostly to nuclei and slightly to cytoplasm, as shown by three channel fluorescence microscopy. Co-transfection of pFADD with MT2A gene inhibited cell apoptosis and induced cell proliferation in colorectal cancer cells compared with control groups. When we used antisense MT2A and pFADD which is serine 194 in the C terminal of FADD gene that has been reported to be phosphorylated to interdict the effect of respective genes the inhibition of cell proliferation and induction of apoptosis were significantly enhanced in animal model.
CONCLUSIONS: Further in this study we identify non-canonical nuclear factor-κB (NF-κB) signaling up regulated and it was directly linked with the tumor necrosis with MT2A and pFADD genes. pFADD with MT2A can inhibit the apoptosis and promote proliferation, of colorectal cancer cells, and antisense sequence of MT2A and pFADD approaches which might swell the combination of deregulated proliferation and suppressed apoptosis.

Long MD, Campbell MJ
Integrative genomic approaches to dissect clinically-significant relationships between the VDR cistrome and gene expression in primary colon cancer.
J Steroid Biochem Mol Biol. 2017; 173:130-138 [PubMed] Related Publications
Recently, we undertook a pan-cancer analyses of the nuclear hormone receptor (NR) superfamily in The Cancer Genome Atlas (TCGA), and revealed that the vitamin D receptor (NR1I1/VDR) was commonly and significantly down-regulated specifically in colon adenocarcinoma cohort (COAD). To examine the consequence of down-regulated VDR expression we re-analyzed VDR chromatin immunoprecipitation sequencing (ChIP-Seq) data from LS180 colon cancer cells (GSE31939). This analysis identified 1809 loci that displayed significant (p.adj<0.01) differential binding of the VDR in response 1,25(OH)

Michalak M, Warnken U, André S, et al.
Detection of Proteome Changes in Human Colon Cancer Induced by Cell Surface Binding of Growth-Inhibitory Human Galectin-4 Using Quantitative SILAC-Based Proteomics.
J Proteome Res. 2016; 15(12):4412-4422 [PubMed] Related Publications
Endogenous lectins have the capacity to translate glycan-encoded information on the cell surface into effects on cell growth. As test cases to examine changes in protein presence associated with tumor growth inhibition, we applied SILAC-based proteomics on human colon carcinoma cells treated with galectin-4 (Gal-4). The five tested lines-LS 180, Vaco 432, Colo 205, CX 1, and HCT 116-responded with differentiation and reduced proliferation to Gal-4 binding. In proteomic analysis (mass spectral data deposited with PRIDE, PXD003489), 2654 proteins were quantified, of which 190 were down-regulated and 115 were up-regulated (>2-fold). 1D annotation analysis of the results indicated down-regulation of DNA replication-associated processes, while protein presence for secretory and transport functions appeared increased. The strongest induction was found for CALB2 (calretinin; ∼24-fold), TGM2 (protein-glutamine γ-glutamyltransferase 2; ∼11-fold), S100A3 (∼10-fold), and GSN (gelsolin; 9.5-fold), and the most pronounced decreases were seen for CDKN2A (tumor suppressor ARF; ∼6-fold), EPCAM (epithelial cell adhesion molecule; ∼6-fold), UBE2C (ubiquitin-conjugating enzyme E2 C; ∼5-fold), KIF2C (kinesin-like protein KIF2C; 5-fold), and LMNB1 (lamin-B1; ∼5-fold). The presence of the common proliferation marker Ki-67 was diminished about 4-fold. By tracing significant alterations of protein expression likely relevant for the observed phenotypic effects, the capacity of a galectin to affect the proteome of human colon cancer cells at multiple sites is revealed.

Yang Y, He S, Wang Q, et al.
Autophagic UVRAG Promotes UV-Induced Photolesion Repair by Activation of the CRL4(DDB2) E3 Ligase.
Mol Cell. 2016; 62(4):507-19 [PubMed] Free Access to Full Article Related Publications
UV-induced DNA damage, a major risk factor for skin cancers, is primarily repaired by nucleotide excision repair (NER). UV radiation resistance-associated gene (UVRAG) is a tumor suppressor involved in autophagy. It was initially isolated as a cDNA partially complementing UV sensitivity in xeroderma pigmentosum (XP), but this was not explored further. Here we show that UVRAG plays an integral role in UV-induced DNA damage repair. It localizes to photolesions and associates with DDB1 to promote the assembly and activity of the DDB2-DDB1-Cul4A-Roc1 (CRL4(DDB2)) ubiquitin ligase complex, leading to efficient XPC recruitment and global genomic NER. UVRAG depletion decreased substrate handover to XPC and conferred UV-damage hypersensitivity. We confirmed the importance of UVRAG for UV-damage tolerance using a Drosophila model. Furthermore, increased UV-signature mutations in melanoma correlate with reduced expression of UVRAG. Our results identify UVRAG as a regulator of CRL4(DDB2)-mediated NER and suggest that its expression levels may influence melanoma predisposition.

Rodia MT, Ugolini G, Mattei G, et al.
Systematic large-scale meta-analysis identifies a panel of two mRNAs as blood biomarkers for colorectal cancer detection.
Oncotarget. 2016; 7(21):30295-306 [PubMed] Free Access to Full Article Related Publications
Colorectal cancer (CRC) is the third most common cancer in the world. A significant survival rate is achieved if it is detected at an early stage. A whole blood screening test, without any attempt to isolate blood fractions, could be an important tool to improve early detection of colorectal cancer. We searched for candidate markers with a novel approach based on the Transcriptome Mapper (TRAM), aimed at identifying specific RNAs with the highest differential expression ratio between colorectal cancer tissue and normal blood samples. This tool permits a large-scale systematic meta-analysis of all available data obtained by microarray experiments. The targeting of RNA took into consideration that tumour phenotypic variation is associated with changes in the mRNA levels of genes regulating or affecting this variation.A real time quantitative reverse transcription polymerase chain reaction (qRT- PCR) was applied to the validation of candidate markers in the blood of 67 patients and 67 healthy controls. The expression of genes: TSPAN8, LGALS4, COL1A2 and CEACAM6 resulted as being statistically different.In particular ROC curves attested for TSPAN8 an AUC of 0.751 with a sensitivity of 83.6% and a specificity of 58.2% at a cut off of 10.85, while the panel of the two best genes showed an AUC of 0.861 and a sensitivity of 92.5% with a specificity of 67.2%.Our preliminary study on a total of 134 subjects showed promising results for a blood screening test to be validated in a larger cohort with the staging stratification and in patients with other gastrointestinal diseases.

Helwa R, Ramadan M, Abdel-Wahab AH, et al.
Promoter SNPs rs116896264 and rs73933062 form a distinct haplotype and are associated with galectin-4 overexpression in colorectal cancer.
Mutagenesis. 2016; 31(4):401-8 [PubMed] Related Publications
Galectin-4 is a member of the galectin family which consists of 15 galactoside-binding proteins. Previously, galectin-4 has been shown to have a role in cancer progression and metastasis and it is found upregulated in many solid tumours, including colorectal cancer (CRC). Recently, the role in the metastatic process was suggested to be via promoting cancer cells to adhere to blood vascular endothelium. In the present study, the regulatory region of LGALS4 (galectin-4) in seven colon cell lines was investigated with respect to genetic variation that could be linked to expression levels and therefore a tumourigenic effect. Interestingly, qRT-PCR and sequencing results revealed that galectin-4 upregulation is associated with SNPs rs116896264 and rs73933062. By use of luciferase reporter- and pull-down assays, we confirmed the association between the gene upregulation and the two SNPs. Also, using pull-down assay followed by mass spectrometry, we found that the presence rs116896264 and rs73933062 is changing transcription factors binding sites. In order to assess the frequencies of the two SNPs among colon cancer patients and healthy individuals, we genotyped 75 colon cancer patients, 12 patients with adenomatous polyposis and 17 patients with ulcerative colitis and we performed data mining in the 1000 genomes databank. We found the two SNPs co-occuring in 21% of 75 CRC patients, 0 out of 12 patients of adenomatous polyposis, and 6 out of 17 patients (35%) with ulcerative colitis. Both in the patient samples and in the 1000 genomes project, the two SNPs were found to co-occur whenever present (D' = 1).

Wang L, Dong J, Wei M, et al.
Selective and augmented β-glucuronidase expression combined with DOX-GA3 application elicits the potent suppression of prostate cancer.
Oncol Rep. 2016; 35(3):1417-24 [PubMed] Related Publications
The present study was carried out to evaluate the specific and amplified β-glucuronidase (βG) expression in prostate cancer cells by using a prostate‑specific antigen (PSA) promoter-controlled bicistronic adenovirus and to evaluate the specific killing of prostate cancer cells after the application of the prodrug DOX‑GA3. Bicistronic adenoviral expression vectors were constructed, and the effectiveness of specific and amplified expression was evaluated using luciferase and EGFP as reporter genes. βG expression was detected in LNCaP cells after they were infected with the βG‑expressing PSA promoter-controlled bicistronic adenovirus. MTT assays were conducted to evaluate the cytoxicity on the infected cells after the application of the prodrug DOX‑GA3. Tumor growth inhibition was also evaluated in nude mice after treatment with the βG‑expressing adenovirus and DOX‑GA3. Selective and amplified expression was observed in the PSA-producing LNCaP cells, but not in the PSA‑non‑producing DU145 cells. Potent cytotoxity and a strong bystander effect were observed in the LNCaP cells after infection with the βG‑expressing adenovirus and the application of DOX‑GA3. Intravenous injection of a GAL4 regulated bicistronic adenovirus vector constructed to express βG under the control of the PSA promoter (Ad/PSAP‑GV16‑βG) and the application of DOX‑GA3 strongly inhibited tumor growth and prolonged the survival time of tumor‑bearing nude mice. Selective and amplified βG expression together with the prodrug DOX‑GA3 had an increased antitumor effect, showing great potential for prostate cancer therapy.

Ji J, Tang J, Deng L, et al.
LINC00152 promotes proliferation in hepatocellular carcinoma by targeting EpCAM via the mTOR signaling pathway.
Oncotarget. 2015; 6(40):42813-24 [PubMed] Free Access to Full Article Related Publications
Hepatocellular carcinoma (HCC) is well known as the sixth most common malignant tumor and the third leading cause of cancer-related deaths globally. LINC00152 was documented as an important long non-coding RNA (lncRNA) involved in the pathogenesis of gastric cancer; however, the detailed mechanism of action of LINC00152 remains unknown. Here, based on the increased level of LINC00152 in HCC tissues, we found that LINC00152 could promote cell proliferation in vitro and tumor growth in vivo. Furthermore, microarray-based analysis indicated that LINC00152 could activate the mechanistic target of rapamycin(mTOR) pathway by binding to the promoter of EpCAM through a cis-regulation, as confirmed by Gal4-λN/BoxB reporter system. Thus, LINC00152 might be involved in the oncogenesis of HCC by activating the mTOR signaling pathway and might be a novel index for clinical diagnosis in the future.

Wang Y, Wu P, Lin R, et al.
LncRNA NALT interaction with NOTCH1 promoted cell proliferation in pediatric T cell acute lymphoblastic leukemia.
Sci Rep. 2015; 5:13749 [PubMed] Free Access to Full Article Related Publications
Long non-coding RNA (lncRNA) was referred to be participating in various malignant tumors. Location based analysis of the mechanism in lncRNA and genes have been highly focused. In this study, we reported that lncRNA named NALT which was located near NOTCH1 within 100 bp away. We confirmed that up-regulation of NALT associating with NOTCH1 in human samples. Increased expression of NALT dramatically promoted cell proliferation in cell lines via CCK8 assay and EDU stain. Further xenograft tumor also indicated the growth inducing affection of NALT while could be partial reversed by GSI. Besides, through sorting the side-population cells in T ALL cells treated with NALT shRNA could decrease percentage of SP cell which companied by the down-regulation of NOTCH1. Gal4-λN/BoxB reporter system revealed that the nuclear located NALT could function as a transcription activator which caused an activation of NOTCH signal pathway as confirmed by western blot. Taken together, we found a neighbor of NOTCH1, Lnc-RP11-611D20.2 (named NALT) which could regulate the NOTCH1 signal pathway through cis-regulation. This founding may trigger a comparable development of diagnosis or novel molecularly-directed therapies.

El Leithy AA, Helwa R, Assem MM, Hassan NH
Expression profiling of cancer-related galectins in acute myeloid leukemia.
Tumour Biol. 2015; 36(10):7929-39 [PubMed] Related Publications
Acute myeloid leukemia (AML) is the most common type of leukemia in adults with the lowest survival rate of all the leukemias. It is a heterogeneous disease in which a variety of cytogenetic and molecular alterations have been identified. Some galectins were previously reported to have important roles in cancer-like neoplastic transformation, tumor cell survival, angiogenesis, and tumor metastasis. Previous studies have showed that some galectin family members play a role in various types of leukemia. The present study aims at evaluating and clarifying the diagnostic and prognostic value of the expression of cancer-related galectins in relation to the clinicopathological characters of AML patients. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to detect expression profile of eight galectin family members (galectin-1, -2, -3, -4, -8, -9, -12, and -13) in 53 newly diagnosed de novo AML patients. The samples were collected from the inpatient clinic at National Cancer Institute (NCI), Cairo University (CU), diagnosed between July 2012 and May 2013. Our results show that patients with lower LGALS12 gene expression have a lower overall survival than those with higher expression (P value <0.026). Moreover, a statistically significant association between the LGALS4 gene expression and patient age is found. Hence, the higher expression of LGALS4 gene is associated with younger age (adjusted P value <0.001). In conclusion, galectin-12 may be a potential prognostic marker for AML.

Liu Z, Li F, Zhang B, et al.
Structural basis of plant homeodomain finger 6 (PHF6) recognition by the retinoblastoma binding protein 4 (RBBP4) component of the nucleosome remodeling and deacetylase (NuRD) complex.
J Biol Chem. 2015; 290(10):6630-8 [PubMed] Free Access to Full Article Related Publications
The NuRD complex is a conserved transcriptional coregulator that contains both chromatin-remodeling and histone deacetylase activities. Mutations of PHF6 are found in patients with Börjeson-Forssman-Lehmann syndrome, T-cell acute lymphoblastic leukemia, or acute myeloid leukemia. Recently, PHF6 was identified to interact with the NuRD complex, and this interaction is mediated by the RBBP4 component. However, little is known about the molecular basis for the interaction. Here, we present the crystal structure of the complex of the NuRD subunit RBBP4 bound to the PHF6 peptide (residues 162-170). The PHF6 peptide binds to the top surface of the RBBP4 β-propeller. A pair of positively charged residues of the PHF6 peptide insert into the negatively charged pocket of RBBP4, which is critical for the interaction between PHF6 and RBBP4. Corresponding PHF6 mutants impair this interaction in vitro and in vivo. Structural comparison shows that the PHF6-binding pocket overlaps with FOG1 and histone H3 on RBBP4/Nurf55, but it is distinct from the pocket recognizing histone H4, Su(z)12, and MTA1. We further show that the middle disordered region (residues 145-207, containing the RBBP4-binding motif) is sufficient for the transcriptional repression mediated by PHF6 on the GAL4 reporter, and knockdown of RBBP4 diminished the PHF6-mediated repression. Our RBBP4-PHF6 complex structure provides insights into the molecular basis of PHF6-NuRD complex interaction and implicates a role for PHF6 in chromatin structure modulation and gene regulation.

Filgueira CS, Benod C, Lou X, et al.
A screening cascade to identify ERβ ligands.
Nucl Recept Signal. 2014; 12:e003 [PubMed] Free Access to Full Article Related Publications
The establishment of effective high throughput screening cascades to identify nuclear receptor (NR) ligands that will trigger defined, therapeutically useful sets of NR activities is of considerable importance. Repositioning of existing approved drugs with known side effect profiles can provide advantages because de novo drug design suffers from high developmental failure rates and undesirable side effects which have dramatically increased costs. Ligands that target estrogen receptor β (ERβ) could be useful in a variety of diseases ranging from cancer to neurological to cardiovascular disorders. In this context, it is important to minimize cross-reactivity with ERα, which has been shown to trigger increased rates of several types of cancer. Because of high sequence similarities between the ligand binding domains of ERα and ERβ, preferentially targeting one subtype can prove challenging. Here, we describe a sequential ligand screening approach comprised of complementary in-house assays to identify small molecules that are selective for ERβ. Methods include differential scanning fluorimetry, fluorescence polarization and a GAL4 transactivation assay. We used this strategy to screen several commercially-available chemical libraries, identifying thirty ERβ binders that were examined for their selectivity for ERβ versus ERα, and tested the effects of selected ligands in a prostate cancer cell proliferation assay. We suggest that this approach could be used to rapidly identify candidates for drug repurposing.

Mishra MN, Mishra MN, Vangara KK, Palakurthi S
Transcriptional targeting of human liver carboxylesterase (hCE1m6) and simultaneous expression of anti-BCRP shRNA enhances sensitivity of breast cancer cells to CPT-11.
Anticancer Res. 2014; 34(11):6345-51 [PubMed] Related Publications
BACKGROUND: The major factor limiting the efficacy of breast cancer chemotherapy is multidrug resistance due to overexpression of the breast cancer resistance protein ATP-binding cassette, sub-family G (WHITE), member 2 (ABCG2). We hypothesized that conversion of camptothecin-11 (CPT-11) to its highly cytotoxic metabolite SN-38 by a mutant human carboxyl esterase (hCE1m6) specifically in cancer cells and inhibition of ABCG2 by anti-ABCG2 short hairpin RNA, leads to accumulation of a higher concentration of SN-38, resulting in higher therapeutic efficacy and less toxicity to normal cells.
MATERIALS AND METHODS: A mutant human carboxyl esterase hCE1m6 with human telomerase reverse transcriptase promoter was integrated into the VISA (VP16-Gal4-WPRE) amplification system. The plasmid was transfected into MCF-12A, MDA-MB-231, and MCF-7 cells using JetPRIME®. Cancer-specific expression of hCE1m6 in breast cancer cell lines was tested by real-time polymerase chain reaction (real time-PCR) and western blot. In vitro conversion of CPT-11 to SN-38 was evaluated on lysates of transfected cells. Cytotoxicity of CPT-11 against cells transfected with the plasmid was evaluated by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay.
RESULTS: Real-time PCR and western blot analysis revealed that hCE1m6 was expressed only in breast cancer cells, MCF-7 and MDA-MB-231, but not in the normal MCF-12A breast cell line. From the CPT-11 conversion assay on cell lysates, it was found that expressed hCE1m6 in cancer cells was able to effectively convert CPT-11 to SN-38.
CONCLUSION: Breast cancer cell lines transfected with hCE1m6 showed an increased susceptibility to CPT-11 in comparison to MCF-12A cells.

Xie X, Tang H, Pengliu, et al.
Development of PEA-15 using a potent non-viral vector for therapeutic application in breast cancer.
Cancer Lett. 2015; 356(2 Pt B):374-381 [PubMed] Free Access to Full Article Related Publications
Advanced breast cancer requires systemic treatment, therefore developing an efficient and safe strategy is urgently needed. To ensure the success of target therapy, we have developed a breast cancer-specific construct (T-VISA) composed of the human telomerase reverse transcriptase (hTERT; T) promoter and a versatile transgene amplification vector VISA (VP16-GAL4-WPRE integrated systemic amplifier) to target PEA-15 (phosphoprotein enriched in astrocytes) in advanced breast tumors. PEA-15 contains a death effector domain that sequesters extracellular signal-regulated kinase (ERK) in the cytoplasm, thereby inhibiting cell proliferation and inducing apoptosis. T-VISA-PEA-15 was found to be highly specific, selectively express PEA-15 in breast cancer cells, and induce cancer-cell killing in vitro and in vivo without affecting normal cells. Moreover, intravenous treatment with T-VISA-PEA-15 coupled with liposome nanoparticles attenuated tumor growth and prolonged survival in mice bearing advanced breast tumors. Importantly, there was virtually no severe toxicity when PEA-15 is expressed by our T-VISA system compared with cytomegalovirus (CMV) promoter. Thus, our findings demonstrate an effective cancer-targeted therapy that is worthy of development in clinical trials eradicating advanced breast cancer.

Cai Z, Zeng Y, Xu B, et al.
Galectin-4 serves as a prognostic biomarker for the early recurrence / metastasis of hepatocellular carcinoma.
Cancer Sci. 2014; 105(11):1510-7 [PubMed] Free Access to Full Article Related Publications
Galectin-4 is a multifunctional lectin found at both intracellular and extracellular sites. It could serve as a tumor suppressor intracellularly and promote tumor metastases extracellularly during colorectal cancer development. However, galectin-4 expression and its prognostic value for patients with hepatocellular carcinoma (HCC) have not been well investigated. Here we report that galectin-4 was significantly downregulated in early recurrent/metastatic HCC patients, when compared to non-recurrent/metastatic HCC patients. Low expression of gelectin-4 was well associated with larger tumor size, microvascular invasion, malignant differentiation, more advanced TNM stage, and poor prognosis. Cancer cell migration and invasion could be significantly reduced through overexpression of galectin-4, but upregulated by knocking down of galectin-4 in vitro. Moreover, the serum galectin-4 level could be significantly elevated solely by hepatitis B virus infection. Combined with clinicopathological features, the higher serologic level of galectin-4 was well associated with more aggressive characteristics of HCC. Taken together, galectin-4 expression closely associates with HCC progression and might have potential use as a prognostic biomarker for HCC patients.

Park JT, Johnson N, Liu S, et al.
Differential in vivo tumorigenicity of diverse KRAS mutations in vertebrate pancreas: A comprehensive survey.
Oncogene. 2015; 34(21):2801-6 [PubMed] Free Access to Full Article Related Publications
Somatic activation of the KRAS proto-oncogene is evident in almost all pancreatic cancers, and appears to represent an initiating event. These mutations occur primarily at codon 12 and less frequently at codons 13 and 61. Although some studies have suggested that different KRAS mutations may have variable oncogenic properties, to date there has been no comprehensive functional comparison of multiple KRAS mutations in an in vivo vertebrate tumorigenesis system. We generated a Gal4/UAS-based zebrafish model of pancreatic tumorigenesis in which the pancreatic expression of UAS-regulated oncogenes is driven by a ptf1a:Gal4-VP16 driver line. This system allowed us to rapidly compare the ability of 12 different KRAS mutations (G12A, G12C, G12D, G12F, G12R, G12S, G12V, G13C, G13D, Q61L, Q61R and A146T) to drive pancreatic tumorigenesis in vivo. Among fish injected with one of five KRAS mutations reported in other tumor types but not in human pancreatic cancer, 2/79 (2.5%) developed pancreatic tumors, with both tumors arising in fish injected with A146T. In contrast, among fish injected with one of seven KRAS mutations known to occur in human pancreatic cancer, 22/106 (20.8%) developed pancreatic cancer. All eight tumorigenic KRAS mutations were associated with downstream MAPK/ERK pathway activation in preneoplastic pancreatic epithelium, whereas nontumorigenic mutations were not. These results suggest that the spectrum of KRAS mutations observed in human pancreatic cancer reflects selection based on variable tumorigenic capacities, including the ability to activate MAPK/ERK signaling.

Maftouh M, Belo AI, Avan A, et al.
Galectin-4 expression is associated with reduced lymph node metastasis and modulation of Wnt/β-catenin signalling in pancreatic adenocarcinoma.
Oncotarget. 2014; 5(14):5335-49 [PubMed] Free Access to Full Article Related Publications
Galectin-4 (Gal-4) has been recently identified as a pivotal factor in the migratory capabilities of a set of defined pancreatic ductal adenocarcinoma (PDAC) cell lines using zebrafish as a model system. Here we evaluated the expression of Gal-4 in PDAC tissues selected according to their lymph node metastatic status (N0 vs. N1), and investigated the therapeutic potential of targeting the cross-link with the Wnt signaling pathway in primary PDAC cells. Analysis of Gal-4 expression in PDACs showed high expression of Gal-4 in 80% of patients without lymph node metastasis, whereas 70% of patients with lymph node metastases had low Gal-4 expression. Accordingly, in primary PDAC cells high Gal-4 expression was negatively associated with migratory and invasive ability in vitro and in vivo. Knockdown of Gal-4 in primary PDAC cells with high Gal-4 expression resulted in significant increase of invasion (40%) and migration (50%, P<0.05), whereas enforced expression of Gal-4 in primary cells with low Gal-4 expression reduced the migratory and invasive behavior compared to the control cells. Gal-4 markedly reduces β-catenin levels in the cell, counteracting the function of Wnt signaling, as was assessed by down-regulation of survivin and cyclin D1. Furthermore, Gal-4 sensitizes PDAC cells to the Wnt inhibitor ICG-001, which interferes with the interaction between CREB binding protein (CBP) and β-catenin. Collectively, our data suggest that Gal-4 lowers the levels of cytoplasmic β-catenin, which may lead to lowered availability of nuclear β-catenin, and consequently diminished levels of nuclear CBP-β-catenin complex and reduced activation of the Wnt target genes. Our findings provide novel insights into the role of Gal-4 in PDAC migration and invasion, and support the analysis of Gal-4 for rational targeting of Wnt/β-catenin signaling in the treatment of PDAC.

Duray A, De Maesschalck T, Decaestecker C, et al.
Galectin fingerprinting in naso-sinusal diseases.
Oncol Rep. 2014; 32(1):23-32 [PubMed] Free Access to Full Article Related Publications
Galectins, a family of endogenous lectins, are multifunctional effectors that act at various sites and can be used in immunohistochemical localization studies of diseased states. Since they form a potentially cooperative and antagonistic network, we tested the hypothesis that histopathological fingerprinting of galectins could refine the molecular understanding of naso-sinusal pathologies. Using non-cross-reactive antibodies against galectin-1, -3, -4, -7, -8 and -9, we characterized the galectin profiles in chronic rhinosinusitis, nasal polyposis, inverted papillomas and squamous cell carcinomas. The expression, signal location and quantitative parameters describing the percentage of positive cells and labeling intensity were assessed for various cases. We discovered that inverted papillomas showed a distinct galectin immunohistochemical profile. Indeed, epithelial overexpression of galectin-3 (p=0.0002), galectin-4 (p<10-6), galectin-7 (p<10-6) and galectin-9 (p<10-6) was observed in inverted papillomas compared to non-malignant diseases. Regarding carcinomas, we observed increased expression of galectin-9 (p<10-6) in epithelial cells compared to non-tumor pathologies. Our results suggest that galectin-3, -4, -7 and -9 could be involved in the biology of inverted papillomas. In addition, we observed that the expression of galectin in naso-sinusal diseases seems to be affected by tumor progression and not inflammatory or allergic phenomena.

Xie X, Kong Y, Tang H, et al.
Targeted BikDD expression kills androgen-dependent and castration-resistant prostate cancer cells.
Mol Cancer Ther. 2014; 13(7):1813-25 [PubMed] Free Access to Full Article Related Publications
Targeted gene therapy is a promising approach for treating prostate cancer after the discovery of prostate cancer-specific promoters such as prostate-specific antigen, rat probasin, and human glandular kallikrein. However, these promoters are androgen dependent, and after castration or androgen ablation therapy, they become much less active or sometimes inactive. Importantly, the disease will inevitably progress from androgen-dependent (ADPC) to castration-resistant prostate cancer (CRPC), at which treatments fail and high mortality ensues. Therefore, it is critical to develop a targeted gene therapy strategy that is effective in both ADPC and CRPC to eradicate recurrent prostate tumors. The human telomerase reverse transcriptase-VP16-Gal4-WPRE integrated systemic amplifier composite (T-VISA) vector we previously developed, which targets transgene expression in ovarian and breast cancer, is also active in prostate cancer. To further improve its effectiveness based on androgen response in ADPC progression, the ARR2 element (two copies of androgen response region from rat probasin promoter) was incorporated into T-VISA to produce AT-VISA. Under androgen analog (R1881) stimulation, the activity of AT-VISA was increased to a level greater than or comparable to the cytomegalovirus promoter in ADPC and CRPC cells, respectively. Importantly, AT-VISA demonstrated little or no expression in normal cells. Systemic administration of AT-VISA-BikDD encapsulated in liposomes repressed prostate tumor growth and prolonged mouse survival in orthotopic animal models as well as in the transgenic adenocarcinoma mouse prostate model, indicating that AT-VISA-BikDD has therapeutic potential to treat ADPC and CRPC safely and effectively in preclinical setting.

Koole W, Tijsterman M
Mosaic analysis and tumor induction in zebrafish by microsatellite instability-mediated stochastic gene expression.
Dis Model Mech. 2014; 7(7):929-36 [PubMed] Free Access to Full Article Related Publications
Mosaic analysis, in which two or more populations of cells with differing genotypes are studied in a single animal, is a powerful approach to study developmental mechanisms and gene function in vivo. Over recent years, several genetic methods have been developed to achieve mosaicism in zebrafish, but despite their advances, limitations remain and different approaches and further refinements are warranted. Here, we describe an alternative approach for creating somatic mosaicism in zebrafish that relies on the instability of microsatellite sequences during replication. We placed the coding sequences of various marker proteins downstream of a microsatellite and out-of-frame; in vivo frameshifting into the proper reading frame results in expression of the protein in random individual cells that are surrounded by wild-type cells. We optimized this approach for the binary Gal4-UAS expression system by generating a driver line and effector lines that stochastically express Gal4-VP16 or UAS:H2A-EGFP and self-maintaining UAS:H2A-EGFP-Kaloop, respectively. To demonstrate the utility of this system, we stochastically expressed a constitutively active form of the human oncogene H-RAS and show the occurrence of hyperpigmentation and sporadic tumors within 5 days. Our data demonstrate that inducing somatic mosaicism through microsatellite instability can be a valuable approach for mosaic analysis and tumor induction in Danio rerio.

Yoon H, Shin SH, Shin DH, et al.
Differential roles of Sirt1 in HIF-1α and HIF-2α mediated hypoxic responses.
Biochem Biophys Res Commun. 2014; 444(1):36-43 [PubMed] Related Publications
Hypoxia-inducible factors 1α and 2α (HIF-1α and HIF-2α) determine cancer cell fate under hypoxia. Despite the similarities of their structures, HIF-1α and HIF-2α have distinct roles in cancer growth under hypoxia, that is, HIF-1α induces growth arrest whereas HIF-2α promotes cell growth. Recently, sirtuin 1 (Sirt1) was reported to fine-tune cellular responses to hypoxia by deacetylating HIF-1α and HIF-2α. Yet, the roles of Sirt1 in HIF-1α and HIF-2α functions have been controversial. We here investigated the precise roles of Sirt1 in HIF-1α and HIF-2α regulations. Immunological analyses revealed that HIF-1α K674 and HIF-2α K741 are acetylated by PCAF and CBP, respectively, but are deacetylated commonly by Sirt1. In the Gal4 reporter systems, Sirt1 was found to repress HIF-1α activity constantly in ten cancer cell-lines but to regulate HIF-2α activity cell type-dependently. Moreover, Sirt1 determined cell growth under hypoxia depending on HIF-1α and HIF-2α. Under hypoxia, Sirt1 promoted cell proliferation of HepG2, in which Sirt1 differentially regulates HIF-1α and HIF-2α. In contrast, such an effect of Sirt1 was not shown in HCT116, in which Sirt1 inactivates both HIF-1α and HIF-2α because conflicting actions of HIF-1α and HIF-2α on cell growth may be offset. Our results provide a better understanding of the roles of Sirt1 in HIF-mediated hypoxic responses and also a basic concept for developing anticancer strategy targeting Sirt1.

Hayashi T, Saito T, Fujimura T, et al.
Galectin-4, a novel predictor for lymph node metastasis in lung adenocarcinoma.
PLoS One. 2013; 8(12):e81883 [PubMed] Free Access to Full Article Related Publications
Metastasis is still a major issue in cancer, and the discovery of biomarkers predicting metastatic capacity is essential for the development of better therapeutic strategies for treating lung adenocarcinoma. By using a proteomic approach, we aimed to identify novel predictors for lymph node metastasis in lung adenocarcinoma. Two-dimensional sodium dodecyl sulfate polyacrylamide gel electrophoresis showed 6 spots differentially expressed between lymph node metastasis-positive and lymph node metastasis-negative groups in a discovery set. Subsequent mass spectrometry showed that 2 of these spots were derived from galectin-4, and western blot analysis confirmed the overexpression of galectin-4 in metastatic samples. The predictive value of galectin-4 was confirmed by immunohistochemical analysis for a validation set consisting of 707 surgically resected specimens of lung adenocarcinomas (stages I to IV). We observed that 148 lung adenocarcinomas (20.9%) expressed galectin-4, which was significantly associated with variables of disease progression such as tumor size (p<0.0001), pleural invasion (p = 0.0071), venous invasion (p = 0.0178), nodal status (p = 0.0007), and TNM stage (p<0.0001). By the multivariate analysis, Galectin-4 expression was revealed as one of the independent predictor for lymph node metastasis, together with solid predominant and micropapillary histologic pattern. Furthermore, galectin-4 expression was revealed to be an independent predictor for lymph node metastasis and an adverse survival factor in patients with lung adenocarcinoma of acinar predominant type. Galectin-4 plays an important role in metastatic process of lung adenocarcinoma. Immunohistochemical testing for galectin-4 expression may be useful together with the detection of specific histology to predict the metastatic potential of lung adenocarcinoma.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. LGALS4, Cancer Genetics Web: http://www.cancer-genetics.org/LGALS4.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 30 August, 2019     Cancer Genetics Web, Established 1999