HIPK2

Gene Summary

Gene:HIPK2; homeodomain interacting protein kinase 2
Aliases: PRO0593
Location:7q34
Summary:This gene encodes a conserved serine/threonine kinase that is a member of the homeodomain-interacting protein kinase family. The encoded protein interacts with homeodomain transcription factors and many other transcription factors such as p53, and can function as both a corepressor and a coactivator depending on the transcription factor and its subcellular localization. Multiple transcript variants encoding different isoforms have been found for this gene. [provided by RefSeq, Nov 2011]
Databases:OMIM, VEGA, HGNC, Ensembl, GeneCard, Gene
Protein:homeodomain-interacting protein kinase 2
HPRD
Source:NCBIAccessed: 27 February, 2015

Ontology:

What does this gene/protein do?
Show (50)

Cancer Overview

Research Indicators

Publications Per Year (1990-2015)
Graph generated 28 February 2015 using data from PubMed using criteria.

Literature Analysis

Mouse over the terms for more detail; many indicate links which you can click for dedicated pages about the topic.

Tag cloud generated 27 February, 2015 using data from PubMed, MeSH and CancerIndex

Specific Cancers (3)

Data table showing topics related to specific cancers and associated disorders. Scope includes mutations and abnormal protein expression.

Note: list is not exhaustive. Number of papers are based on searches of PubMed (click on topic title for arbitrary criteria used).

Latest Publications: HIPK2 (cancer-related)

Fleischmann KK, Pagel P, Schmid I, Roscher AA
RNAi-mediated silencing of MLL-AF9 reveals leukemia-associated downstream targets and processes.
Mol Cancer. 2014; 13:27 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: The translocation t(9;11)(p22;q23) leading to the leukemogenic fusion gene MLL-AF9 is a frequent translocation in infant acute myeloid leukemia (AML). This study aimed to identify genes and molecular processes downstream of MLL-AF9 (alias MLL-MLLT3) which could assist to develop new targeted therapies for such leukemia with unfavorable prognosis.
METHODS: In the AML cell line THP1 which harbors this t(9;11) translocation, endogenous MLL-AF9 was silenced via siRNA while ensuring specificity of the knockdown and its efficiency on functional protein level.
RESULTS: The differential gene expression profile was validated for leukemia-association by gene set enrichment analysis of published gene sets from patient studies and MLL-AF9 overexpression studies and revealed 425 differentially expressed genes. Gene ontology analysis was consistent with a more differentiated state of MLL-AF9 depleted cells, with involvement of a wide range of downstream transcriptional regulators and with defined functional processes such as ribosomal biogenesis, chaperone binding, calcium homeostasis and estrogen response. We prioritized 41 gene products as candidate targets including several novel and potentially druggable effectors of MLL-AF9 (AHR, ATP2B2, DRD5, HIPK2, PARP8, ROR2 and TAS1R3). Applying the antagonist SCH39166 against the dopamine receptor DRD5 resulted in reduced leukemic cell characteristics of THP1 cells.
CONCLUSION: Besides potential new therapeutic targets, the described transcription profile shaped by MLL-AF9 provides an information source into the molecular processes altered in MLL aberrant leukemia.

Tong Y, Li QG, Xing TY, et al.
HIF1 regulates WSB-1 expression to promote hypoxia-induced chemoresistance in hepatocellular carcinoma cells.
FEBS Lett. 2013; 587(16):2530-5 [PubMed] Related Publications
WSB-1 is involved in DNA damage response by targeting homeodomain-interacting protein kinase 2 (HIPK2) for ubiquitination and degradation. Here, we report that hypoxia significantly up-regulates the expression of WSB-1 in human hepatocellular carcinoma (HCC) cells. We also provide evidence that WSB-1 is a target of hypoxia-inducible factor 1 (HIF-1). Silencing the expression of HIF-1α in HCC cells by RNA interference abolishes hypoxia-induced WSB-1 expression. Using chromatin immunoprecipitation and luciferase reporter assays, we identified a HRE of the WSB-1 gene. Moreover, silencing the expression of WSB-1 by RNA interference rescues HIPK2 expression in hypoxic HCC cells and promotes etoposide-induced cell death in hypoxic HCC cells. Taken together, these data shed light on the mechanisms underlying hypoxia-induced chemoresistance in HCC cells.

Saul VV, Schmitz ML
Posttranslational modifications regulate HIPK2, a driver of proliferative diseases.
J Mol Med (Berl). 2013; 91(9):1051-8 [PubMed] Related Publications
The serine/threonine kinase homeodomain-interacting protein kinase (HIPK2) is a tumor suppressor and functions as an evolutionary conserved regulator of signaling and gene expression. This kinase regulates a surprisingly vast array of biological processes that range from the DNA damage response and apoptosis to hypoxia signaling and cell proliferation. Recent studies show the tight control of HIPK2 by hierarchically occurring posttranslational modifications such as phosphorylation, small ubiquitin-like modifier modification, acetylation, and ubiquitination. The physiological function of HIPK2 as a regulator of cell proliferation and survival has a downside: proliferative diseases. Dysregulation of HIPK2 can result in increased proliferation of cell populations as it occurs in cancer or fibrosis. We discuss various models that could explain how inappropriate expression, modification, or localization of HIPK2 can be a driver for these proliferative diseases.

Kurokawa K, Akaike Y, Masuda K, et al.
Downregulation of serine/arginine-rich splicing factor 3 induces G1 cell cycle arrest and apoptosis in colon cancer cells.
Oncogene. 2014; 33(11):1407-17 [PubMed] Related Publications
Serine/arginine-rich splicing factor 3 (SRSF3) likely has wide-ranging roles in gene expression and facilitation of tumor cell growth. SRSF3 knockdown induced G1 arrest and apoptosis in colon cancer cells (HCT116) in association with altered expression of 833 genes. Pathway analysis revealed 'G1/S Checkpoint Regulation' as the most highly enriched category in the affected genes. SRSF3 knockdown did not induce p53 or stimulate phosphorylation of p53 or histone H2A.X in wild-type HCT116 cells. Furthermore, the knockdown induced G1 arrest in p53-null HCT116 cells, suggesting that p53-dependent DNA damage responses did not mediate the G1 arrest. Real-time reverse transcription-polymerase chain reaction and western blotting confirmed that SRSF3 knockdown reduced mRNA and protein levels of cyclins (D1, D3 and E1), E2F1 and E2F7. The decreased expression of cyclin D and E2F1 likely impaired the G1-to-S-phase progression. Consequently, retinoblastoma protein remained hypophosphorylated in SRSF3 knockdown cells. The knockdown also induced apoptosis in association with reduction of BCL2 protein levels. We also found that SRSF3 knockdown facilitated skipping of 81 5'-nucleotides (27 amino acids) from exon 8 of homeodomain-interacting protein kinase-2 (HIPK2) and produced a HIPK2 Δe8 isoform. Full-length HIPK2 (HIPK2 FL) is constantly degraded through association with an E3 ubiquitin ligase (Siah-1), whereas HIPK2 Δe8, lacking the 27 amino acids, lost Siah-1-binding ability and became resistant to proteasome digestion. Interestingly, selective knockdown of HIPK2 FL induced apoptosis in various colon cancer cells expressing wild-type or mutated p53. Thus, these findings disclose an important role of SRSF3 in the regulation of the G1-to-S-phase progression and alternative splicing of HIPK2 in tumor growth.

Imberg-Kazdan K, Ha S, Greenfield A, et al.
A genome-wide RNA interference screen identifies new regulators of androgen receptor function in prostate cancer cells.
Genome Res. 2013; 23(4):581-91 [PubMed] Free Access to Full Article Related Publications
The androgen receptor (AR) is a mediator of both androgen-dependent and castration-resistant prostate cancers. Identification of cellular factors affecting AR transcriptional activity could in principle yield new targets that reduce AR activity and combat prostate cancer, yet a comprehensive analysis of the genes required for AR-dependent transcriptional activity has not been determined. Using an unbiased genetic approach that takes advantage of the evolutionary conservation of AR signaling, we have conducted a genome-wide RNAi screen in Drosophila cells for genes required for AR transcriptional activity and applied the results to human prostate cancer cells. We identified 45 AR-regulators, which include known pathway components and genes with functions not previously linked to AR regulation, such as HIPK2 (a protein kinase) and MED19 (a subunit of the Mediator complex). Depletion of HIPK2 and MED19 in human prostate cancer cells decreased AR target gene expression and, importantly, reduced the proliferation of androgen-dependent and castration-resistant prostate cancer cells. We also systematically analyzed additional Mediator subunits and uncovered a small subset of Mediator subunits that interpret AR signaling and affect AR-dependent transcription and prostate cancer cell proliferation. Importantly, targeting of HIPK2 by an FDA-approved kinase inhibitor phenocopied the effect of depletion by RNAi and reduced the growth of AR-positive, but not AR-negative, treatment-resistant prostate cancer cells. Thus, our screen has yielded new AR regulators including drugable targets that reduce the proliferation of castration-resistant prostate cancer cells.

Wang Y, Liu F, Mao F, et al.
Interaction with cyclin H/cyclin-dependent kinase 7 (CCNH/CDK7) stabilizes C-terminal binding protein 2 (CtBP2) and promotes cancer cell migration.
J Biol Chem. 2013; 288(13):9028-34 [PubMed] Free Access to Full Article Related Publications
CtBP2 has been demonstrated to possess tumor-promoting capacities by virtue of up-regulating epithelial-mesenchymal transition (EMT) and down-regulating apoptosis in cancer cells. As a result, cellular CtBP2 levels are considered a key factor determining the outcome of oncogenic transformation. How pro-tumorigenic and anti-tumorigenic factors compete for fine-tuning CtBP2 levels is incompletely understood. Here we report that the cyclin H/cyclin-dependent kinase 7 (CCNH/CDK7) complex interacted with CtBP2 in vivo and in vitro. Depletion of either CCNH or CDK7 decreased CtBP2 protein levels by accelerating proteasome-dependent CtBP2 clearance. Further analysis revealed that CCNH/CDK7 competed with the tumor repressor HIPK2 for CtBP2 binding and consequently inhibited phosphorylation and dimerization of CtBP2. Phosphorylation-defective CtBP2 interacted more strongly with CCNH/CDK7 and was more resistant to degradation. Finally, overexpression of CtBP2 increased whereas depletion of CtBP2 dampened the invasive and migratory potential of breast cancer cells. CtBP2 promoted the invasion and migration of breast cancer cells in a CCNH-dependent manner. Taken together, our data have delineated a novel pathway that regulates CtBP2 stability, suggesting that targeting the CCNH/CDK7-CtBP2 axis may yield a viable anti-tumor strategy.

Song H, Boo JH, Kim KH, et al.
Critical role of presenilin-dependent γ-secretase activity in DNA damage-induced promyelocytic leukemia protein expression and apoptosis.
Cell Death Differ. 2013; 20(4):639-48 [PubMed] Free Access to Full Article Related Publications
Promyelocytic leukemia (PML) is a major component of macromolecular multiprotein complexes called PML nuclear-bodies (PML-NBs). These PML-NBs recruit numerous proteins including CBP, p53 and HIPK2 in response to DNA damage, senescence and apoptosis. In this study, we investigated the effect of presenilin (PS), the main component of the γ-secretase complex, in PML/p53 expression and downstream consequences during DNA damage-induced cell death using camptothecin (CPT). We found that the loss of PS in PS knockout (KO) MEFs (mouse embryonic fibroblasts) results in severely blunted PML expression and attenuated cell death upon CPT exposure, a phenotype that is fully reversed by re-expression of PS1 in PS KO cells and recapitulated by γ-secretase inhibitors in hPS1 MEFs. Interestingly, the γ-secretase cleavage product, APP intracellular domain (AICD), together with Fe65-induced PML expression at the protein and transcriptional levels in PS KO cells. PML and p53 reciprocally positively regulated each other during CPT-induced DNA damage, both of which were dependent on PS. Finally, elevated levels of PML-NB, PML protein and PML mRNA were detected in the brain tissues from Alzheimer's disease (AD) patients, where γ-secretase activity is essential for pathogenesis. Our data provide for the first time, a critical role of the PS/AICD-PML/p53 pathway in DNA damage-induced apoptosis, and implicate this pathway in AD pathogenesis.

Veschi V, Petroni M, Cardinali B, et al.
Galectin-3 impairment of MYCN-dependent apoptosis-sensitive phenotype is antagonized by nutlin-3 in neuroblastoma cells.
PLoS One. 2012; 7(11):e49139 [PubMed] Free Access to Full Article Related Publications
MYCN amplification occurs in about 20-25% of human neuroblastomas and characterizes the majority of the high-risk cases, which display less than 50% prolonged survival rate despite intense multimodal treatment. Somehow paradoxically, MYCN also sensitizes neuroblastoma cells to apoptosis, understanding the molecular mechanisms of which might be relevant for the therapy of MYCN amplified neuroblastoma. We recently reported that the apoptosis-sensitive phenotype induced by MYCN is linked to stabilization of p53 and its proapoptotic kinase HIPK2. In MYCN primed neuroblastoma cells, further activation of both HIPK2 and p53 by Nutlin-3 leads to massive apoptosis in vitro and to tumor shrinkage and impairment of metastasis in xenograft models. Here we report that Galectin-3 impairs MYCN-primed and HIPK2-p53-dependent apoptosis in neuroblastoma cells. Galectin-3 is broadly expressed in human neuroblastoma cell lines and tumors and is repressed by MYCN to induce the apoptosis-sensitive phenotype. Despite its reduced levels, Galectin-3 can still exert residual antiapoptotic effects in MYCN amplified neuroblastoma cells, possibly due to its specific subcellular localization. Importantly, Nutlin-3 represses Galectin-3 expression, and this is required for its potent cell killing effect on MYCN amplified cell lines. Our data further characterize the apoptosis-sensitive phenotype induced by MYCN, expand our understanding of the activity of MDM2-p53 antagonists and highlight Galectin-3 as a potential biomarker for the tailored p53 reactivation therapy in patients with high-risk neuroblastomas.

Cheng Y, Al-Beiti MA, Wang J, et al.
Correlation between homeodomain-interacting protein kinase 2 and apoptosis in cervical cancer.
Mol Med Rep. 2012; 5(5):1251-5 [PubMed] Related Publications
Homeodomain-interacting protein kinase 2 (HIPK2) is a serine/threonine nuclear kinase that is involved in apoptosis and cell growth, and is also thought to play a role in the process of tumorigenesis. The purpose of this study was to identify the role of HIPK2 in cervical cancer. HIPK2 expression was examined in normal and cervical cancer tissues at the mRNA and protein levels by quantitative real-time PCR and western blotting. To investigate the mechanism of action of HIPK2 in cervical cancer, RNA interference was used to analyze the effect of HIPK2 on apoptosis and cell growth in cervical cell lines. The results showed that HIPK2 expression was significantly higher in the cervical cancer tissues compared to the normal cervical tissues, both at the mRNA and protein level. Moreover, inhibition of HIPK2 promoted cell growth and decreased the rate of cell apoptosis in cervical cell lines. Taken together, these results indicate that HIPK2 expression is higher in cervical cancer tissues and has a positive correlation with cervical cancer. HIPK2 may be important in the development of cervical cancer.

Das Purkayastha BP, Roy JK
Molecular analysis of oncogenicity of the transcription factor, BRN3A, in cervical cancer cells.
J Cancer Res Clin Oncol. 2011; 137(12):1859-67 [PubMed] Related Publications
OBJECTIVE: The host cellular transcription factor, BRN3A, has been observed to play a vital role in cancer of the uterine cervix. BRN3A possesses multipartite functions, which include transcription of the genes of the high-risk HPVs and mediation of cellular changes in the host. In this study, we made an effort to decipher the regulation of BRN3A in cervical cancer cells by studying its interaction with different components of the cell.
METHODS: In cervical cancer cells, the endogenous HIPK2 was induced through cisplatin treatment, and then, its subsequent effect on BRN3A was primarily investigated through co-immunostaining and western blotting as HIPK2 has been observed to act as a co-repressor of Brn3a. The physical interaction of the two proteins was analyzed through co-immunoprecipitation. We resorted to chromatin immunoprecipitation in order to testify the autoregulatory pathway of BRN3A in cervical cancer cells. Interaction of BRN3A with cellular components, p73 and active form of JNK, was also studied through co-immunostaining.
RESULTS: We observed that BRN3A is independent of the regulative activity of HIPK2 and undergoes positive autoregulation in cervical cancer cells. Interestingly, during the study, it was revealed that BRN3A is unaffected by the treatment of cisplatin. Interaction of BRN3A with p73 and phosphorylated JNK in cervical cancer cells, observed in the present study, would help in understanding the molecular mechanism directed by BRN3A.
CONCLUSIONS: BRN3A possesses anti-apoptotic property, and considering the above results, it may be regarded as the key component in promoting tumorigenic growth in the uterine cervical cells.

Mougeot JL, Bahrani-Mougeot FK, Lockhart PB, Brennan MT
Microarray analyses of oral punch biopsies from acute myeloid leukemia (AML) patients treated with chemotherapy.
Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011; 112(4):446-52 [PubMed] Related Publications
OBJECTIVE: Understanding the pathogenesis of chemotherapy-induced oral mucositis (CIOM) is vital to develop therapies for this common, dose-limiting side effect of cancer treatment. We investigated molecular events in CIOM from buccal mucosa tissue collected before and 2 days after chemotherapy from patients with acute myeloid leukemia (AML) and healthy controls by microarray analysis.
METHODS: Microarray analysis was performed using Human Genome U133 Plus 2.0 Array on buccal mucosa punch biopsies from patients with AML before (n = 4) or after chemotherapy (n = 4), and from healthy controls (n = 3). Following Robust Multichip Average (RMA) normalization, we applied Linear Models for Microarray data (LIMMA) and Significance Analysis of Microarrays (SAM) for data analysis using the TM4/TMeV v4.5.1 program.
RESULTS: LIMMA and SAM identified genes potentially affected by the presence of AML, including homeodomain-interacting protein kinase 1 (HIPK1), mex-3 homolog D (MEX3D), and genes potentially affected by chemotherapy, including argininosuccinate synthase 1 (ASS1), notch homolog 1 (NOTCH1), zinc transporter ZIP6 (SLC39A6), and TP53-regulated inhibitor of apoptosis 1 (TRIAP1). The expression of 2 genes with potential biological significance in oral mucositis, ASS1 and SLC39A6 (alias LIV-1), was confirmed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR).
CONCLUSIONS: Our results suggest that AML-specific deregulated immune responses and inflammatory tissue damage to the oral mucosa caused by chemotherapy may not be overcome by the natural cellular repair processes and therefore contribute to CIOM.

Lavra L, Rinaldo C, Ulivieri A, et al.
The loss of the p53 activator HIPK2 is responsible for galectin-3 overexpression in well differentiated thyroid carcinomas.
PLoS One. 2011; 6(6):e20665 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Galectin-3 (Gal-3) is an anti-apoptotic molecule involved in thyroid cells transformation. It is specifically overexpressed in thyroid tumour cells and is currently used as a preoperative diagnostic marker of thyroid malignancy. Gal-3 expression is downregulated by wt-p53 at the transcriptional level. In well-differentiated thyroid carcinomas (WDTCs) there is an unexplained paradoxical concomitant expression of Gal-3 and wt-p53. HIPK2 is a co-regulator of different transcription factors, and modulates basic cellular processes mainly through the activation of wt-p53. Since we demonstrated that HIPK2 is involved in p53-mediated Gal-3 downregulation, we asked whether HIPK2 deficiency might be responsible for such paradoxical Gal-3 overexpression in WDTC.
METHODOLOGY/PRINCIPAL FINDINGS: We analyzed HIPK2 protein and mRNA levels, as well as loss of heterozygosity (LOH) at the HIPK2 locus (7q32-34), in thyroid tissue samples. HIPK2 protein levels were high in all follicular hyperplasias (FHs) analyzed. Conversely, HIPK2 was undetectable in 91.7% of papillary thyroid carcinomas (PTCs) and in 60.0% of follicular thyroid carcinomas (FTCs). HIPK2 mRNA levels were upregulated in FH compared to normal thyroid tissue (NTT), while PTC showed mean HIPK2 mRNA levels lower than FH and, in 61.5% of cases, also lower than NTT. We found LOH at HIPK-2 gene locus in 37.5% of PTCs, 14.3% of FTCs and 18.2% of follicular adenomas. To causally link these data with Gal-3 upregulation, we performed in vitro experiments, using the PTC-derived K1 cells, in which HIPK2 expression was manipulated by RNA interference (RNAi) or plasmid-mediated overexpression. HIPK2 RNAi was associated with Gal-3 upregulation, while HIPK2 overexpression with Gal-3 downregulation.
CONCLUSIONS/SIGNIFICANCE: Our results indicate that HIPK2 expression and function are impaired in WDTCs, in particular in PTCs, and that this event explains Gal-3 overexpression typically observed in these types of tumours. Therefore, HIPK2 can be considered as a new tumour suppressor gene for thyroid cancers.

Soubeyran I, Mahouche I, Grigoletto A, et al.
Tissue microarray cytometry reveals positive impact of homeodomain interacting protein kinase 2 in colon cancer survival irrespective of p53 function.
Am J Pathol. 2011; 178(5):1986-98 [PubMed] Free Access to Full Article Related Publications
The human p53 gene is a tumor suppressor mutated in half of colon cancers. Although p53 function appears important for proliferation arrest and apoptosis induced by cancer therapeutics, the prognostic significance of p53 mutations remains elusive. This suggests that p53 function is modulated at a posttranslational level and that dysfunctions affecting its modulators can have a prognostic impact. Among p53 modulators, homeodomain interacting protein kinase (HIPK) 2 emerges as a candidate "switch" governing p53 transition from a cytostatic to a proapoptotic function. Thus, we investigated the possible prognostic role of HIPK2 on a retrospective series of 80 colon cancer cases by setting up a multiplexed cytometric approach capable of exploring correlative protein expression at the single tumor cell level on TMA. Crossing the data with quantitative PCR and p53 gene sequencing and p53 functional assays, we observed the following: despite a strong impact on p21 transcription, the presence of disabling p53 mutations has no prognostic value, and the increased expression of the HIPK2 protein in tumor cells compared with paired normal tissue cells has a strong impact on survival. Unexpectedly, HIPK2 effect does not appear to be mediated by p53 function because it is also observed in p53-disabling mutated backgrounds. Thus, our results point to a prominent and p53-independent role of HIPK2 in colon cancer survival.

Puca R, Nardinocchi L, Porru M, et al.
Restoring p53 active conformation by zinc increases the response of mutant p53 tumor cells to anticancer drugs.
Cell Cycle. 2011; 10(10):1679-89 [PubMed] Related Publications
Absence of p53 expression or expression of mutant p53 (mtp53) are common in human cancers and are associated with increased cancer resistance to chemo- and radiotherapy. Therefore, significant efforts towards pharmaceutical reactivation of defective p53 pathways are underway. We previously reported that, in HIPK2 knockdown background, p53 undergoes misfolding with inhibition of DNA binding and transcriptional activities that correlate with increased chemoresistance, and that zinc rescues wild-type p53 activity. Zinc has a crucial role in the biology of p53, in that p53 binds to DNA through a structurally complex domain stabilized by zinc atom. In this study, we explored the role of zinc in p53 reactivation in mutant p53-expressing cancer cells. We found that zinc re-established chemosensitivity in breast cancer SKBR3 (expressing R175H mutation) and glioblastoma U373MG (expressing R273H mutation) cell lines. Biochemical studies showed that zinc partly induced the transition of mutant p53 protein (reactive to conformation-sensitive PAb240 antibody for mutant conformation) into a functional conformation (reactive to conformation-sensitive PAb1620 antibody for wild-type conformation). Zinc-mediated p53 reactivation also reduced the mtp53/p73 interaction restoring both wtp53 and p73 binding to target gene promoters by ChIP assay with in vivo induction of wtp53 target gene expression, which rendered mutant p53 cells more prone to drug killing in vitro. Finally, zinc administration in U373MG tumor xenografts increased drug-induced tumor regression in vivo, which correlated with increased wild-type p53 protein conformation. These results show that the use of zinc might restore drug sensitivity and inhibit tumor growth by reactivating mutant p53.

Huang Y, Chuang A, Hao H, et al.
Phospho-ΔNp63α is a key regulator of the cisplatin-induced microRNAome in cancer cells.
Cell Death Differ. 2011; 18(7):1220-30 [PubMed] Free Access to Full Article Related Publications
Head and neck squamous cell carcinoma (HNSCC) cells exposed to cisplatin (CIS) displayed a dramatic ATM-dependent phosphorylation of ΔNp63α that leads to the transcriptional regulation of downstream mRNAs. Here, we report that phospho (p)-ΔNp63α transcriptionally deregulates miRNA expression after CIS treatment. Several p-ΔNp63α-dependent microRNA species (miRNAs) were deregulated in HNSCC cells upon CIS exposure, including miR-181a, miR-519a, and miR-374a (downregulated) and miR-630 (upregulated). Deregulation of miRNA expression led to subsequent modulation of mRNA expression of several targets (TP53-S46, HIPK2, ATM, CDKN1A and 1B, CASP3, PARP1 and 2, DDIT1 and 4, BCL2 and BCL2L2, TP73, YES1, and YAP1) that are involved in the apoptotic process. Our data support the notion that miRNAs are critical downstream targets of p-ΔNp63α and mediate key pathways implicated in the response of cancer cells to chemotherapeutic drugs.

de la Vega L, Fröbius K, Moreno R, et al.
Control of nuclear HIPK2 localization and function by a SUMO interaction motif.
Biochim Biophys Acta. 2011; 1813(2):283-97 [PubMed] Related Publications
The serine/threonine kinase HIPK2 regulates gene expression programs controlling differentiation and cell death. HIPK2 localizes in subnuclear speckles, but the structural components allowing this localization are not understood. A point mutation analysis allowed mapping two nuclear localization signals and a SUMO interaction motif (SIM) that also occurs in HIPK1 and HIPK3. The SIM binds all three major isoforms of SUMO (SUMO-1-3), while only SUMO-1 is capable of covalent conjugation to HIPK2. Deletion or mutation of the SIM prevented SUMO binding and precluded localization of HIPK2 in nuclear speckles, thus causing localization of HIPK2 to the entire cell. Functional inactivation of the SIM prohibited recruitment of HIPK2 to PML nuclear bodies and disrupted colocalization with other proteins such as the polycomb protein Pc2 in nuclear speckles. Interaction of HIPK2 with Pc2 or PML in intact cells was largely dependent on a functional SIM in HIPK2, highlighting the relevance of SUMO/SIM interactions as a molecular glue that serves to enhance protein/protein interaction networks. HIPK2 mutants with an inactive SIM showed changed activities, thus revealing that non-covalent binding of SUMO to the kinase is important for the regulation of its function.

Li Z, Hu S, Wang J, et al.
MiR-27a modulates MDR1/P-glycoprotein expression by targeting HIPK2 in human ovarian cancer cells.
Gynecol Oncol. 2010; 119(1):125-30 [PubMed] Related Publications
OBJECTIVE: MicroRNAs (miRNAs) are non-coding, single-stranded small RNAs that regulate gene expression negatively, which is involved in fundamental cellular processes and the initiation, development and progression of human cancer. In this study, we investigated the role of miR-27a in the development of drug resistance in ovarian cancer cells.
METHODS: Expression of miR-27a in ovarian cancer cell lines A2780 and A2780/Taxol were detected by stem-loop real-time PCR. A2780 and A2780/Taxol cells were transfected with the mimics or inhibitors of miR-27a or negative control RNA (NC) by Lipofectamine 2000. The expression levels of MDR1 mRNA, P-glycoprotein (P-gp) and Homeodomain-interacting protein kinase-2 (HIPK2) proteins were assessed by real-time PCR and western blot respectively. Drug sensitivity was analyzed by MTT assay while apoptosis and the fluorescence intensity of intracellular Rhodamine 123 (Rh-123) were measured by FACS.
RESULTS: The expression levels of miR-27a and P-gp were up-regulated in paclitaxel-resistant ovarian cancer cell line A2780/Taxol as compared with its parental line A2780. Transfection of A2780/Taxol cells with the inhibitors of miR-27a decreased the expression of MDR1 mRNA and P-gp protein, increased HIPK2 protein expression, enhanced the sensitivity of A2780/taxol cells to paclitaxel, increased paclitaxel-induced apoptosis and the fluorescence intensity of intracellular Rh-123. Expression of MDR1 mRNA was increased while the sensitivity to paclitaxel was decreased in A2780 cells management with the mimics of miR-27a.
CONCLUSIONS: The deregulation of miR-27a may be involved in the development of drug resistance, regulating the expression of MDR1/P-gp, at least in part, by targeting HIPK2 in ovarian cancer cells.

Esposito F, Tornincasa M, Chieffi P, et al.
High-mobility group A1 proteins regulate p53-mediated transcription of Bcl-2 gene.
Cancer Res. 2010; 70(13):5379-88 [PubMed] Related Publications
We have previously described a mechanism through which the high-mobility group A1 (HMGA1) proteins inhibit p53-mediated apoptosis by delocalizing the p53 proapoptotic activator homeodomain-interacting protein kinase 2 from the nucleus to the cytoplasm. By this mechanism, HMGA1 modulates the transcription of p53 target genes such as Mdm2, p21(waf1), and Bax, inhibiting apoptosis. Here, we report that HMGA1 antagonizes the p53-mediated transcriptional repression of another apoptosis-related gene, Bcl-2, suggesting a novel mechanism by which HMGA1 counteracts apoptosis. Moreover, HMGA1 overexpression promotes the reduction of Brn-3a binding to the Bcl-2 promoter, thereby blocking the Brn-3a corepressor function on Bcl-2 expression following p53 activation. Consistently, a significant direct correlation between HMGA1 and Bcl-2 overexpression has been observed in human breast carcinomas harboring wild-type p53. Therefore, this study suggests a novel mechanism, based on Bcl-2 induction, by which HMGA1 overexpression contributes to the escape from apoptosis leading to neoplastic transformation.

Puca R, Nardinocchi L, Givol D, D'Orazi G
Regulation of p53 activity by HIPK2: molecular mechanisms and therapeutical implications in human cancer cells.
Oncogene. 2010; 29(31):4378-87 [PubMed] Related Publications
The p53 protein is the most studied tumor suppressor and the p53 pathway has been shown to mediate cellular stress responses that are disrupted when cancer develops. After DNA damage, p53 is activated as transcription factor to directly induce the expression of target genes involved in cell-cycle arrest, DNA repair, senescence and, importantly, apoptosis. Post-translational modifications of p53 are essential for the activation of p53 and for selection of target genes. The tumor suppressor homeodomain-interacting protein kinase-2 (HIPK2) is a crucial regulator of p53 apoptotic function by phosphorylating its N-terminal serine 46 (Ser46) and facilitating Lys382 acetylation at the C-terminus. HIPK2 is activated by numerous genotoxic agents and can be deregulated in tumors by several conditions including hypoxia. Recent findings suggest that HIPK2 active/inactive protein can affect p53 function in multiple and unexpected ways. This makes p53 as well as HIPK2 interesting targets for cancer therapy. Hence, understanding the role of HIPK2 as p53 activator may provide important insights in the process of tumor progression, and may also serve as the crucial point in the diagnostic and therapeutical aspects of cancer.

Nardinocchi L, Puca R, Givol D, D'Orazi G
HIPK2-a therapeutical target to be (re)activated for tumor suppression: role in p53 activation and HIF-1α inhibition.
Cell Cycle. 2010; 9(7):1270-5 [PubMed] Related Publications
Oncosuppressor p53 is often inactivated by either mutations or deregulation of regulatory proteins. These include the homeodomain-interacting protein kinase 2 (HIPK2) that, by phosphorylating p53 at Ser46 modulates p53 response to DNA damage by inducing pro-apoptotic transcription. There is compelling evidence that HIPK2 is also involved in the response to hypoxia by acting as co-suppressor of hypoxia inducible factor 1α (HIF-1α), a major factor in cancer progression that activates the transcription of genes involved in angiogenesis, glucose metabolism and invasion. Hence conditions that induce HIPK2 deregulation would end up in a multifactorial response leading to tumor chemoresistance by affecting p53 activity on one hand and to angiogenesis and cell proliferation by affecting HIF-1 activity on the other hand. For these reasons, HIPK2 protein is a promising target for anti-cancer therapies. HIPK2 can be inhibited by hypoxia. In this respect, we have recently shown that hypoxia-driven HIPK2 downregulation is not irreversible. We found that, zinc supplementation reactivates the hypoxia-inhibited HIPK2, leading to repression of the HIF-1 pathway and restoration of p53Ser46 apoptotic activity. Here, we discuss about these findings and the potential relevance of zinc supplementation to chemotherapy in cancer treatment. The results will be also discussed in light of recent findings showing that cancer treatment with antiangiogenic agents may result in hypoxia and selection of cancer cells with increased tumor aggressiveness and metastasis.

Yang LH, Xu HT, Han Y, et al.
Axin downregulates TCF-4 transcription via beta-catenin, but not p53, and inhibits the proliferation and invasion of lung cancer cells.
Mol Cancer. 2010; 9:25 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: We previously reported that overexpression of Axin downregulates T cell factor-4 (TCF-4) transcription. However, the mechanism(s) by which Axin downregulates the transcription and expression of TCF-4 is not clear. It has been reported that beta-catenin promotes and p53 inhibits TCF-4 transcription, respectively. The aim of this study was to investigate whether beta-catenin and/or p53 is required for Axin-mediated downregulation of TCF-4.
RESULTS: Axin mutants that lack p53/HIPK2 and/or beta-catenin binding domains were expressed in lung cancer cells, BE1 (mutant p53) and A549 (wild type p53). Expression of Axin or AxinDeltap53 downregulates beta-catenin and TCF-4, and knock-down of beta-catenin upregulates TCF-4 in BE1 cells. However, expression of AxinDeltabeta-ca into BE1 cells did not downregulate TCF-4 expression. These results indicate that Axin downregulates TCF-4 transcription via beta-catenin. Although overexpression of wild-type p53 also downregulates TCF-4 in BE1 cells, cotransfection of p53 and AxinDeltabeta-ca did not downregulate TCF-4 further. These results suggest that Axin does not promote p53-mediated downregulation of TCF-4. Axin, AxinDeltap53, and AxinDeltabeta-ca all downregulated beta-catenin and TCF-4 in A549 cells. Knock-down of p53 upregulated beta-catenin and TCF-4, but cotransfection of AxinDeltabeta-ca and p53 siRNA resulted in downregulation of beta-catenin and TCF-4. These results indicate that p53 is not required for Axin-mediated downregulation of TCF-4. Knock-down or inhibition of GSK-3beta prevented Axin-mediated downregulation of TCF-4. Furthermore, expression of Axin and AxinDeltap53, prevented the proliferative and invasive ability of BE1 and A549, expression of AxinDeltabeta-ca could only prevented the proliferative and invasive ability effectively.
CONCLUSIONS: Axin downregulates TCF-4 transcription via beta-catenin and independently of p53. Axin may also inhibits the proliferation and invasion of lung cancer cells via beta-catenin and p53.

Yu J, Deshmukh H, Gutmann RJ, et al.
Alterations of BRAF and HIPK2 loci predominate in sporadic pilocytic astrocytoma.
Neurology. 2009; 73(19):1526-31 [PubMed] Free Access to Full Article Related Publications
OBJECTIVE: Independent studies have previously demonstrated that both the HIPK2 and BRAF genes are amplified and rearranged, respectively, in pilocytic astrocytomas (PAs). The purpose of this study was to further investigate the frequency of BRAF and HIPK2 alterations in PAs, the concordance of these events, and their relationship to clinical phenotype.
METHODS: We performed extensive characterization by array-based copy number assessment (aCGH), HIPK2 copy number analysis, and BRAF rearrangement and mutation analysis in a set of 79 PAs, including 9 tumors from patients with neurofibromatosis type 1 (NF1).
RESULTS: We identified 1 of 3 previously identified BRAF rearrangements in 42/70 sporadic PAs. An additional 2 tumors with no rearrangement also exhibited BRAF mutation, including a novel 3-base insertion. As predicted from the genomic organization at this locus, 22/36 tumors with BRAF rearrangement also exhibited corresponding HIPK2 amplification. However, 14/36 tumors with BRAF rearrangement had no detectable HIPK2 gene amplification and 6/20 tumors demonstrated HIPK2 amplification without apparent BRAF rearrangement or mutation. Only 12/70 PAs lacked detectable BRAF or HIPK2 alterations. Importantly, none of the 9 PA tumors from NF1 patients exhibited BRAF rearrangement or mutation.
CONCLUSIONS: BRAF rearrangement represents the most common genetic alteration in sporadic, but not neurofibromatosis type 1-associated, pilocytic astrocytomas (PAs). These findings implicate BRAF in the pathogenesis of these common low-grade astrocytomas in children, and suggest that PAs arise either from NF1 inactivation or BRAF gain of function.

Jacob K, Albrecht S, Sollier C, et al.
Duplication of 7q34 is specific to juvenile pilocytic astrocytomas and a hallmark of cerebellar and optic pathway tumours.
Br J Cancer. 2009; 101(4):722-33 [PubMed] Free Access to Full Article Related Publications
BACKGROUND: Juvenile pilocytic astrocytomas (JPA), a subgroup of low-grade astrocytomas (LGA), are common, heterogeneous and poorly understood subset of brain tumours in children. Chromosomal 7q34 duplication leading to fusion genes formed between KIAA1549 and BRAF and subsequent constitutive activation of BRAF was recently identified in a proportion of LGA, and may be involved in their pathogenesis. Our aim was to investigate additional chromosomal unbalances in LGA and whether incidence of 7q34 duplication is associated with tumour type or location.
METHODS AND RESULTS: Using Illumina-Human-Hap300-Duo and 610-Quad high-resolution-SNP-based arrays and quantitative PCR on genes of interest, we investigated 84 paediatric LGA. We demonstrate that 7q34 duplication is specific to sporadic JPA (35 of 53 - 66%) and does not occur in other LGA subtypes (0 of 27) or NF1-associated-JPA (0 of 4). We also establish that it is site specific as it occurs in the majority of cerebellar JPA (24 of 30 - 80%) followed by brainstem, hypothalamic/optic pathway JPA (10 of 16 - 62.5%) and is rare in hemispheric JPA (1 of 7 - 14%). The MAP-kinase pathway, assessed through ERK phosphorylation, was active in all tumours regardless of 7q34 duplication. Gain of function studies performed on hTERT-immortalised astrocytes show that overexpression of wild-type BRAF does not increase cell proliferation or baseline MAPK signalling even if it sensitises cells to EGFR stimulation.
CONCLUSIONS AND INTERPRETATION: Our results suggest that variants of JPA might arise from a unique site-restricted progenitor cell where 7q34 duplication, a hallmark of this tumour-type in association to MAPK-kinase pathway activation, potentially plays a site-specific role in their pathogenesis. Importantly, gain of function abnormalities in components of MAP-Kinase signalling are potentially present in all JPA making this tumour amenable to therapeutic targeting of this pathway.

Bon G, Di Carlo SE, Folgiero V, et al.
Negative regulation of beta4 integrin transcription by homeodomain-interacting protein kinase 2 and p53 impairs tumor progression.
Cancer Res. 2009; 69(14):5978-86 [PubMed] Related Publications
Increased expression of alpha(6)beta(4) integrin in several epithelial cancers promotes tumor progression; however, the mechanism underlying its transcriptional regulation remains unclear. Here, we show that depletion of homeodomain-interacting protein kinase 2 (HIPK2) activates beta(4) transcription that results in a strong increase of beta(4)-dependent mitogen-activated protein kinase and Akt phosphorylation, anchorage-independent growth, and invasion. In contrast, stabilization of HIPK2 represses beta(4) expression in wild-type p53 (wtp53)-expressing cells but not in p53-null cells or cells expressing mutant p53, indicating that HIPK2 requires a wtp53 to inhibit beta(4) transcription. Consistent with our in vitro findings, a strong correlation between beta(4) overexpression and HIPK2 inactivation by cytoplasmic relocalization was observed in wtp53-expressing human breast carcinomas. Under loss of function of HIPK2 or p53, the p53 family members TAp63 and TAp73 strongly activate beta(4) transcription. These data, by revealing that beta(4) expression is transcriptionally repressed in tumors by HIPK2 and p53 to impair beta(4)-dependent tumor progression, suggest that loss of p53 function favors the formation of coactivator complex with the TA members of the p53 family to allow beta(4) transcription.

Nardinocchi L, Puca R, Guidolin D, et al.
Transcriptional regulation of hypoxia-inducible factor 1alpha by HIPK2 suggests a novel mechanism to restrain tumor growth.
Biochim Biophys Acta. 2009; 1793(2):368-77 [PubMed] Related Publications
HIPK2 has been implicated in restraining tumor progression by more than one mechanism, involving both its catalytic and transcriptional co-repressor functions. Starting from the finding that HIPK2 knockdown by RNA-interference (HIPK2i) induced significant up-regulation of HIF-1alpha mRNA and of its target VEGF in tumor cells, we evaluated the role of HIPK2 in transcriptional regulation of HIF-1alpha. We found that HIPK2 overexpression downmodulated both HIF-1alpha reporter activity and mRNA levels and showed that HIPK2 was bound in vivo to the HIF-1alpha promoter likely in a multiprotein co-repressor complex with histone deacetylase 1 (HDAC1). Thus, the HIF-1alpha promoter was strongly acetylated following HIPK2 knockdown. The HIF-1alpha-dependent VEGF transcription was evaluated by co-transfection of a dominant negative (DN) construct of HIF-1alpha that inhibited VEGF reporter activity induced by HIPK2 knockdown. HIF-1alpha and VEGF up-regulation in HIPK2i cells correlated with increased vascularity of tumor xenografts in vivo and tube formation in HUVEC in vitro. These findings provide the first evidence of HIPK2-mediated transcriptional regulation of HIF-1alpha that might play a critical role in VEGF expression.

Sievert AJ, Jackson EM, Gai X, et al.
Duplication of 7q34 in pediatric low-grade astrocytomas detected by high-density single-nucleotide polymorphism-based genotype arrays results in a novel BRAF fusion gene.
Brain Pathol. 2009; 19(3):449-58 [PubMed] Free Access to Full Article Related Publications
In the present study, DNA from 28 pediatric low-grade astrocytomas was analyzed using Illumina HumanHap550K single-nucleotide polymorphism oligonucleotide arrays. A novel duplication in chromosome band 7q34 was identified in 17 of 22 juvenile pilocytic astrocytomas and three of six fibrillary astrocytomas. The 7q34 duplication spans 2.6 Mb of genomic sequence and contains approximately 20 genes, including two candidate tumor genes, HIPK2 and BRAF. There were no abnormalities in HIPK2, and analysis of two mutation hot-spots in BRAF revealed a V600E mutation in only one tumor without the duplication. Fluorescence in situ hybridization confirmed the 7q34 copy number change and was suggestive of a tandem duplication. Reverse transcription polymerase chain reaction-based sequencing revealed a fusion product between KIAA1549 and BRAF. The predicted fusion product includes the BRAF kinase domain and lacks the auto-inhibitory N-terminus. Western blot analysis revealed phosphorylated mitogen-activated protein kinase (MAPK) protein in tumors with the duplication, consistent with BRAF-induced activation of the pathway. Further studies are required to determine the role of this fusion gene in downstream MAPK signaling and its role in development of pediatric low-grade astrocytomas.

Raina D, Ahmad R, Chen D, et al.
MUC1 oncoprotein suppresses activation of the ARF-MDM2-p53 pathway.
Cancer Biol Ther. 2008; 7(12):1959-67 [PubMed] Free Access to Full Article Related Publications
The MUC1 oncoprotein interacts with the c-Abl tyrosine kinase and blocks nuclear targeting of c-Abl in the apoptotic response to DNA damage. Mutation of the MUC1 cytoplasmic domain at Tyr-60 disrupts the MUC1-c-Abl interaction. The present results demonstrate that the MUC1(Y60F) mutant is a potent inducer of the ARF tumor suppressor. MUC1(Y60F) induces transcription of the ARF locus by a c-Abl-dependent mechanism that promotes CUL-4A-mediated nuclear export of the replication protein Cdc6. The functional significance of these findings is that MUC1(Y60F)-induced ARF expression and thereby inhibition of MDM2 results in the upregulation of p53 and the homeodomain interacting protein kinase 2 (HIPK2) serine/threonine kinase. HIPK2-mediated phosphorylation of p53 on Ser-46 was further associated with a shift from expression of the cell cycle arrest-related p21 gene to the apoptosis-related PUMA gene. We also show that the MUC1(Y60F) mutant functions as dominant negative inhibitor of tumorigenicity. These findings indicate that the oncogenic function of MUC1 is conferred by suppressing activation of the ARF-MDM2-p53 pathway.

Bar EE, Lin A, Tihan T, et al.
Frequent gains at chromosome 7q34 involving BRAF in pilocytic astrocytoma.
J Neuropathol Exp Neurol. 2008; 67(9):878-87 [PubMed] Related Publications
Relatively little is known about the molecular changes that promote the formation or growth of pilocytic astrocytomas. We investigated genomic alterations in 25 pilocytic astrocytomas, including 5 supratentorial and 20 posterior fossa tumors, using oligonucleotide array comparative genomic hybridization. Large changes were identified in 7 tumors and included gains of chromosomes 5, 6, and 7 and losses of chromosomes 16, 17, 19, and 22. The most common alteration was a 1.9-MB region of low-level gain at chromosome 7q34 identified in 17 of 20 posterior fossa tumors. In most tumors, the region of gain ended within the BRAF locus and encompassed only exons that encode the BRAF kinase domain. We confirmed copy number increase at the 7q34 locus using quantitative polymerase chain reaction with primers adjacent to the HIPK2, RAB19B, and BRAF genes. Western blot analysis revealed that 3 of 6 pilocytic astrocytomas with 7q34 gain contained high levels of phosphorylated extracellular signal-related kinase (ERK) and nitrogen-activated protein kinase/ERK kinase (MEK), while 1 tumor lacking 7q34 gain and 2 normal brain specimens did not. Immunohistochemical stains of a tissue microarray containing 43 pilocytic astrocytoma identified ERK phosphorylation in 35 (81%). These data indicate that focal gains at chromosome 7q34 and increased BRAF-MEK-ERK signaling are common findings in sporadic pilocytic astrocytomas.

Puca R, Nardinocchi L, Gal H, et al.
Reversible dysfunction of wild-type p53 following homeodomain-interacting protein kinase-2 knockdown.
Cancer Res. 2008; 68(10):3707-14 [PubMed] Related Publications
About half of cancers sustain mutations in the TP53 gene, whereas the other half maintain a wild-type p53 (wtp53) but may compromise the p53 response because of other alterations. Homeodomain-interacting protein kinase-2 (HIPK2) is a positive regulator of p53 oncosuppressor function. Here, we show, by microarray analysis, that wtp53 lost the target gene activation following stable knockdown of HIPK2 (HIPK2i) in colon cancer cell line. Our data show that the stable knockdown of HIPK2 led to wtp53 misfolding, as detected by p53 immunoprecipitation with conformation-specific antibodies, and that p53 protein misfolding impaired p53 DNA binding and transcription of target genes. We present evidence that zinc supplementation to HIPK2i cells increased p53 reactivity to conformation-sensitive PAb1620 (wild-type conformation) antibody and restored p53 sequence-specific DNA binding in vivo and transcription of target genes in response to Adriamycin treatment. Finally, combination of zinc and Adriamycin suppressed tumor growth in vivo and activated misfolded p53 that induced its target genes in nude mice tumor xenografts derived from HIPK2i cells. Bioinformatics analysis of microarray data from colon cancer patients showed significant association of poor survival with low HIPK2 expression only in tumors expressing wtp53. These results show a critical role of HIPK2 in maintaining the transactivation activity of wtp53 and further suggest that low expression of HIPK2 may impair the p53 function in tumors harboring wtp53.

Deshmukh H, Yeh TH, Yu J, et al.
High-resolution, dual-platform aCGH analysis reveals frequent HIPK2 amplification and increased expression in pilocytic astrocytomas.
Oncogene. 2008; 27(34):4745-51 [PubMed] Related Publications
Pilocytic astrocytomas (PAs, WHO grade I) are the most common brain tumors in the pediatric and adolescent population, accounting for approximately one-fifth of central nervous system tumors. Because few consistent molecular alterations have been identified in PAs compared to higher grade gliomas, we performed array comparative genomic hybridization using two independent commercial array platforms. Although whole chromosomal gains and losses were not observed, a 1-Mb amplified region of 7q34 was detected in multiple patient samples using both array platforms. Copy-number gain was confirmed in an independent tumor sample set by quantitative PCR, and this amplification was correlated to both increased mRNA and protein expression of HIPK2, a homeobox-interacting protein kinase associated with malignancy, contained within this locus. Furthermore, overexpression of wild-type HIPK2, but not a kinase-inactive mutant, in a glioma cell line conferred a growth advantage in vitro. Collectively, these results illustrate the power and necessity of implementing high-resolution, multiple-platform genomic analyses to discover small and subtle, but functionally significant, genomic alterations associated with low-grade tumor formation and growth.

Disclaimer: This site is for educational purposes only; it can not be used in diagnosis or treatment.

Cite this page: Cotterill SJ. HIPK2, Cancer Genetics Web: http://www.cancer-genetics.org/HIPK2.htm Accessed:

Creative Commons License
This page in Cancer Genetics Web by Simon Cotterill is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
Note: content of abstracts copyright of respective publishers - seek permission where appropriate.

 [Home]    Page last revised: 27 February, 2015     Cancer Genetics Web, Established 1999